Use of flint from phosphate mine waste rocks as an alternative aggregates for concrete

2021 ◽  
Vol 271 ◽  
pp. 121886
Author(s):  
Aiman El Machi ◽  
Safaa Mabroum ◽  
Yassine Taha ◽  
Arezki Tagnit-Hamou ◽  
Mostafa Benzaazoua ◽  
...  
Author(s):  
A. El Machi ◽  
S. Mabroum ◽  
Y. Taha ◽  
A. Tagnit-Hamou ◽  
M. Benzaazoua ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 237 ◽  
Author(s):  
Mustapha Amrani ◽  
Yassine Taha ◽  
Azzouz Kchikach ◽  
Mostafa Benzaazoua ◽  
Rachid Hakkou

The road construction sector is a worldwide high consumer of natural aggregates. The use of unusual industrial by-products in road techniques can contribute to the conservation of non-renewable natural resources and the reduction of wastes produced by some industries. Phosphate waste rocks could be considered as potential alternative secondary raw materials in road construction. The use and valorization of these wastes is currently limited according to the Moroccan guide for road earthworks (GMTR). The guide has classified these materials as waste products, which consequently, cannot be used in road construction. However, phosphate waste rocks are sedimentary natural rocks which have not been subjected to any transformation other than mechanical fragmentation. The goal of this paper is to discuss key-properties of various phosphate mine waste rocks (PMWR) to be used as road materials. Samples were taken from different stockpiles in the phosphate mine site of Gantour in Morocco. The different waste rocks samples were characterized in terms of their physical, geotechnical, chemical, mineralogical and environmental properties using international testing norms. The obtained results showed that the studied PMWR presented satisfying characteristics; the specific (particle) density: ρs > 26 kN/m3, Los Angeles abrasion: 45% < LA < 58%), methylene blue value MBV < 1 g/100g, organic matter: OM < 1% and plasticity index: PI < 20%. All PMWR were confirmed as possessing the requested geotechnical properties to be used as materials for embankments. Moreover, leaching tests showed that none of them released any contaminants. In field application, these materials have been also successfully used in in situ experimental pilot testing. Therefore, the PMWR have to be classified in the category of natural aggregates that are similar to conventional materials.


2019 ◽  
Vol 378 ◽  
pp. 120718 ◽  
Author(s):  
Amal Oumani ◽  
Laila Mandi ◽  
Fatima Berrekhis ◽  
Naaila Ouazzani
Keyword(s):  

2015 ◽  
Vol 52 (9) ◽  
pp. 1255-1269 ◽  
Author(s):  
Bruno Bossé ◽  
Bruno Bussière ◽  
Rachid Hakkou ◽  
Abdelkabir Maqsoud ◽  
Mostafa Benzaazoua

A field investigation was conducted to evaluate the effectiveness of store-and-release (SR) covers made with different phosphate mine wastes in reducing water infiltration (system inclination and surface runoff were neglected) and controlling acid rock drainage (ARD) generation. Four instrumented experimental cells were constructed with different SR layer configurations (two thicknesses and three materials) placed over a capillary break layer. To assess the hydrogeological behaviour of these cover systems, volumetric water content, matric suction, and meteorological monitoring time trends were studied for a period of 1.5 years under actual and extreme conditions typical of an arid climate. Under natural climatic conditions, all net infiltration was released to the atmosphere by the physical process of evaporation (regardless of SR layer thickness and type). Although high surface matric suction (>3000 kPa) decreased the evaporation rate (or release capacity) during the drying period, field tests showed that the studied scenarios limited deep water infiltration even under extreme rainfall events. The release capacity of the SR layer was slightly lower for cover systems made with the finer-grained mine waste (phosphate limestone tailings). This study showed that, for a one-dimensional (1D) condition, the tested phosphate mine wastes have the appropriate hydrogeological properties to be used as components of SR covers under conditions at the Kettara mine site, located near Marrakech, Morocco.


2021 ◽  
pp. 103817
Author(s):  
A. Benahsina ◽  
Y. El Haloui ◽  
Y. Taha ◽  
M. Elomari ◽  
M. Abdouh Bennouna

Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Hamza Zine ◽  
Sara Elgadi ◽  
Rachid Hakkou ◽  
Eleni G. Papazoglou ◽  
Laila Midhat ◽  
...  

The management of mine waste has become an urgent issue, especially in semi-arid environments. In this context, and with an aim to inhibit the oxidation of the sulfide tailings of the abandoned mine of Kettara in Morocco, a store-and-release (SR) cover made of phosphate mine waste (PW) was implemented. In order to guarantee its long-term performance, phytostabilization by local wild plant species is currently the most effective and sustainable solution. This study aimed to assess the growth performance and phytostabilization efficiency of five local wild plant species to grow on the SR cover made of PW. A field experiment was conducted for two growing seasons (2018 and 2019), without amendments and with the minimum of human care. PW and the aboveground and belowground parts of the studied plant species were collected and analyzed for As, Cd, Cu, Ni, and Zn. The bioconcentration factor (BCF) and translocation factor (TF) were also calculated. Despite the hostile conditions of the mining environment, the five plant species showed promising growth performances as follows: Atriplex semibaccata > Vicia sativa > Launaea arborescens > Peganum harmala > Asparagus horridus. The five plants showed high accumulation capacity of the trace elements, with the highest concentrations in belowground tissue. Principal component analysis distinguished A. semibaccata as having a high concentration of Cu and As, while Asparagus horridus had higher concentrations of Cd and Zn. In contrast, P. harmala, V. sativa, and L. arborescens demonstrated affinity regarding Ni. According to the BCF (<1) and TF (<1), these plant species could be used as effective phytostabilizers of the studied trace elements. The present study showed that local wild plant species have a great potential for the phytostabilization of PW, and could ensure the long-term efficiency of SR cover.


Sign in / Sign up

Export Citation Format

Share Document