Flexural and compressive strengths of carbon nanotube reinforced cementitious composites as a function of curing time

2022 ◽  
Vol 318 ◽  
pp. 125996
Author(s):  
Jun Huang ◽  
Denis Rodrigue ◽  
Peipei Guo
2020 ◽  
Vol 54 (25) ◽  
pp. 3857-3870 ◽  
Author(s):  
Linwei Li ◽  
Sufen Dong ◽  
Xufeng Dong ◽  
Xun Yu ◽  
Baoguo Han

Helical carbon nanotubes, a type of chiral metamaterial, were employed to investigate their effects as well as the mechanisms to electromagnetic wave shielding and absorption performances of cementitious composites over the frequency range from 2 GHz to 18 GHz. The results demonstrate that the best electromagnetic wave shielding effectiveness (SE) of cementitious composites filled with 7.5 wt.% helical carbon nanotubes is 1.39 times of that of cementitious composites without helical carbon nanotubes. The minimum reflectivity in 20 mm-thickness cementitious composites with 4.5 wt.% helical carbon nanotubes is 2.7 times of that of cementitious composites without helical carbon nanotubes. Cementitious composites with 7.5 wt.% helical carbon nanotubes have smallest matching thickness and the minimum reflectivity of −41.0 dB. By analyzing electromagnetic parameters and conductive mechanisms, it is found that helical carbon nanotubes mainly affect reflection loss ratio in electromagnetic wave shielding and the dielectric loss in electromagnetic wave absorption. Both parameters are attributed to the enhanced conductivity with the increase of helical carbon nanotubes. The percolation zone ranges from 1.5 wt.% to 7.5 wt.% for alternating current resistivity, with conductive path transferring from ion conduction to electron conduction as the content of helical carbon nanotubes increases. Additionally, incorporating helical carbon nanotubes essentially does not cause the decrease in compressive strength of cementitious composites. The results recommend that cementitious composites incorporating carbon nanotube metamaterial with helical chirality present high electromagnetic performances with satisfactory compressive strength.


2018 ◽  
Vol 202 ◽  
pp. 1042-1050 ◽  
Author(s):  
Heeyoung Lee ◽  
Young Min Song ◽  
Kenneth J. Loh ◽  
Wonseok Chung

2020 ◽  
Vol 20 (6) ◽  
pp. 1-5
Author(s):  
Kwang-Mo Lim ◽  
Seong-Yeon Yun ◽  
Joo-Ha Lee

Carbon-based nanomaterials are used in various industrial fields because of their excellent performance. In construction, cementitious composites containing carbon-based materials have the potential to be used for various purposes such as crack detection and deicing. However, carbon-based materials have been experienced difficulties that cannot be easily dispersed in the cementitious composite because of the inherent material characteristic. This study aimed to investigate the possibility of using these carbon-based nanomaterials as construction materials. The structural and electrical performances of cementitious composites were investigated based on carbon-based materials such as Multi-Walled Carbon Nanotube (MWCNT), Single-Walled Carbon Nanotube (SWCNT), Graphene Nanoplatelets (GNP), Conductive Graphite Powder (CGP). In addition, the microstructural analysis was performed through the noncovalent functionalization of carbon-based nanomaterials to examine the dispersibility.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tanvir Manzur ◽  
Nur Yazdani ◽  
Md. Abul Bashar Emon

Application of nanoscale science to construction material has already begun. In recent times, various nanofibers have raised the interest of researchers due to their exceptional mechanical properties and high potential to be used as reinforcement within cement matrix. Carbon nanotube (CNT) is one of the most important areas of research in the field of nanotechnology. The size and exceptional mechanical properties of CNT show their high potential to be used to produce high performance next generation cementitious composites. In this study, an attempt has been made to investigate the effect of size of CNTs on compressive strengths of CNT reinforced cement composites. Seven different sizes of multiwalled nanotubes (MWNTs) were used to produce MWNT-cement composites. A trend was observed regarding the effect of nanotube size on compressive strength of composites in most cases. MWNT with outside diameter (OD) of 20 nm or less exhibited relatively better performance. Smaller MWNT can be distributed at much finer scale and consequently filling the nanopore space within the cement matrix more efficiently. This in turn resulted in stronger composites.


Sign in / Sign up

Export Citation Format

Share Document