Influences of initial pH, nutrient and vitamin additions on bio-hydrogen production from enzymatic hydrolysate of cassava starch wastewater

2013 ◽  
Vol 24 ◽  
pp. S140
Author(s):  
Parichat Wadjeam ◽  
Alissara Reungsang ◽  
Sahataya Thongsan
2019 ◽  
Vol 44 (29) ◽  
pp. 14694-14706 ◽  
Author(s):  
Parichat Wadjeam ◽  
Alissara Reungsang ◽  
Tsuyoshi Imai ◽  
Pensri Plangklang

2017 ◽  
Vol 37 (1) ◽  
pp. 160-172 ◽  
Author(s):  
Douglas G. B. Torres ◽  
Shaiane Dal' Maso Lucas ◽  
Cristiane L. Andreani ◽  
Karina Q. de Carvalho ◽  
Silvia R. M. Coelho ◽  
...  

2019 ◽  
Vol 38 (1) ◽  
pp. 69-77
Author(s):  
Noppawan Photong ◽  
Jaruwan Wongthanate

This research is focused on the feasibility of biofuel from water hyacinth mixed with cassava starch sediment by biological and physical conversion processes and the comparison of the gross electricity production in these processes. The biological conversion process produced biomethane by anaerobic digestion. The optimal conditions of biomethane production were a ratio of water hyacinth and cassava starch sediment at 25:75, initial pH of 7.5, thermophilic temperature (55 ± 2°C) and C/N ratio of 30. The maximum biomethane yield measured was 436.82 mL CH4 g chemical oxygen demand (COD)−1 and the maximum COD removal was 87.40%. The physical conversion process was bio-briquette. It was found that the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were the best ratio of fuel properties and close to the Thai Community Product Standard, with heating values of 15.66, 15.43, 15.10, 14.88 and 14.58 MJ kg−1, respectively. Moreover, results showed that the gross electricity production of the biological conversion process (biomethane) was 3.90 kWh and the gross electricity production of the physical conversion process (bio-briquette) from the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were 1.52, 1.50, 1.47, 1.45 and 1.42 kWh, respectively.


2014 ◽  
Vol 8 ◽  
pp. 167-172 ◽  
Author(s):  
Nitinard Chaleomrum ◽  
Kannika Chookietwattana ◽  
Somchai Dararat

2013 ◽  
Vol 14 (2) ◽  
pp. 149-156 ◽  

This work focused on glycerol exploitation for biogas and hydrogen production. Anaerobic digestion of pure glycerol was studied in a continuous stirred tank reactor (CSTR), operated under mesophilic conditions (35oC) at various organic loading rates. The overall operation of the reactor showed that it could not withstand organic loading rates above 0.25 g COD L-1 d-1, where the maximum biogas (0.42 ± 0.05 L (g COD)-1) and methane (0.30 ± 0.04 L (g COD)-1) production were achieved. Fermentative hydrogen production was carried out in batch reactors under mesophilic conditions (35oC), using heat-pretreated anaerobic microbial culture as inoculum. The effects of initial concentration of glycerol and initial pH value on hydrogen production were studied. The highest yield obtained was 22.14 ± 0.46 mL H2 (g COD added)-1 for an initial pH of 6.5 and an initial glycerol concentration of 8.3 g COD L-1. The main metabolic product was 1.3 propanediol (PDO), while butyric and acetic acids as well as ethanol, at lower concentrations, were also determined.


Author(s):  
Sarai Camarena-Martínez ◽  
Juan Humberto Martínez-Martínez ◽  
Adriana Saldaña-Robles ◽  
Graciela M.L Ruiz-Aguilar

Hydrogen (H2) is recognized as a promising energy carrier among the alternatives for obtaining clean energy, since it has a high energy efficiency (122 kJ / g) and can be obtained from lignocellulosic waste through a biological process. In the state of Guanajuato, high amounts of plant waste derived from tomato cultivation are generated because this is the crop mostly produced through protected agriculture. So, the objective of the present study was to consider tomato plant residues for the generation of hydrogen through the anaerobic digestion process. Two sources of inoculum, native microflora of the tomato plant and anaerobic sludge pretreated at 100 ° C for 24 h; and four mineral media at an initial pH of 6.5 ± 0.2 in batch experiments, were evaluated. The highest yield was 37.4 mLH2 / g SV using native microflora and mineral media with yeast extract. Hydrogen production was found like those reported in the literature for other type of waste, highlighting the no-need to pretreat the substrate or inoculum. Therefore, the methodology propose is efficient to the hydrogen production from tomato plant residues.


Sign in / Sign up

Export Citation Format

Share Document