scholarly journals Metabolic engineering of Yarrowia lipolytica for industrial applications

2015 ◽  
Vol 36 ◽  
pp. 65-72 ◽  
Author(s):  
Quinn Zhu ◽  
Ethel N Jackson
2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Vijaydev Ganesan ◽  
Michael Spagnuolo ◽  
Ayushi Agrawal ◽  
Spencer Smith ◽  
Difeng Gao ◽  
...  

AbstractYarrowia lipolytica has emerged as a biomanufacturing platform for a variety of industrial applications. It has been demonstrated to be a robust cell factory for the production of renewable chemicals and enzymes for fuel, feed, oleochemical, nutraceutical and pharmaceutical applications. Metabolic engineering of this non-conventional yeast started through conventional molecular genetic engineering tools; however, recent advances in gene/genome editing systems, such as CRISPR–Cas9, transposons, and TALENs, has greatly expanded the applications of synthetic biology, metabolic engineering and functional genomics of Y. lipolytica. In this review we summarize the work to develop these tools and their demonstrated uses in engineering Y. lipolytica, discuss important subtleties and challenges to using these tools, and give our perspective on important gaps in gene/genome editing tools in Y. lipolytica.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenyu Zhang ◽  
Pengfu Liu ◽  
Weike Su ◽  
Huawei Zhang ◽  
Wenqian Xu ◽  
...  

AbstractTrans-4-hydroxy-l-proline is an important amino acid that is widely used in medicinal and industrial applications, particularly as a valuable chiral building block for the organic synthesis of pharmaceuticals. Traditionally, trans-4-hydroxy-l-proline is produced by the acidic hydrolysis of collagen, but this process has serious drawbacks, such as low productivity, a complex process and heavy environmental pollution. Presently, trans-4-hydroxy-l-proline is mainly produced via fermentative production by microorganisms. Some recently published advances in metabolic engineering have been used to effectively construct microbial cell factories that have improved the trans-4-hydroxy-l-proline biosynthetic pathway. To probe the potential of microorganisms for trans-4-hydroxy-l-proline production, new strategies and tools must be proposed. In this review, we provide a comprehensive understanding of trans-4-hydroxy-l-proline, including its biosynthetic pathway, proline hydroxylases and production by metabolic engineering, with a focus on improving its production.


2013 ◽  
Vol 98 (1) ◽  
pp. 251-262 ◽  
Author(s):  
A. Beopoulos ◽  
J. Verbeke ◽  
F. Bordes ◽  
M. Guicherd ◽  
M. Bressy ◽  
...  

2019 ◽  
Author(s):  
Yingshuo Hou ◽  
Siyu Chen ◽  
Jianjun Wang ◽  
Guizhen Liu ◽  
Sheng Wu ◽  
...  

Abstract Background:Corynebacterium ammoniagenes is an important industrial organism that is widely used to produce nucleotides and the potential for industrial production of coenzyme A by Corynebacterium ammoniagenes ATCC 6871 has been shown. However, the yield of coenzyme A needs to be improved and the available constitutive promoters are rather limited in this strain. Results:In this study, 20 putative DNA promoters derived from genes with high transcription levels and 6 promoters from molecular chaperone genes were identified. To evaluate the activity of each promoter, red fluorescence protein (RFP) was used as a reporter. We successfully isolated a range of promoters with different activity levels resulting in different fluorescent intensities. A fragment derived from the upstream sequence of the 50S ribosomal protein L21 (Prpl21) exhibited the strongest activity among the 26 identified promoters. Furthermore, type III pantothenate kinase from Pseudomonas putida (PpcoaA) was overexpressed in C. ammoniagenes under the control of Prpl21, CoA yield increased approximately 4.1 times. Conclusions:This study provides a paradigm for rational isolation of promoters with different activities and their application in metabolic engineering. These promoters will enrich the available promoter toolkit for C. ammoniagenes and should be valuable in current platforms for metabolic engineering and synthetic biology for the optimization of pathways to extend the product spectrum or improve the productivity in C. ammoniagenes ATCC 6871 for industrial applications.


2020 ◽  
Vol 42 (6) ◽  
pp. 945-956 ◽  
Author(s):  
Xin-Kai Zhang ◽  
Dan-Ni Wang ◽  
Jun Chen ◽  
Zhi-Jie Liu ◽  
Liu-Jing Wei ◽  
...  

2018 ◽  
Vol 102 (22) ◽  
pp. 9541-9548 ◽  
Author(s):  
Tian-Qiong Shi ◽  
He Huang ◽  
Eduard J. Kerkhoven ◽  
Xiao-Jun Ji

Sign in / Sign up

Export Citation Format

Share Document