The carbon balance of tropical forest regions, 1990–2005

2010 ◽  
Vol 2 (4) ◽  
pp. 237-244 ◽  
Author(s):  
Yadvinder Malhi
1999 ◽  
Vol 13 (2) ◽  
pp. 503-517 ◽  
Author(s):  
Corinne Galy-Lacaux ◽  
Robert Delmas ◽  
Georges Kouadio ◽  
Sandrine Richard ◽  
Philippe Gosse

Sensors ◽  
2014 ◽  
Vol 14 (5) ◽  
pp. 8259-8282 ◽  
Author(s):  
Sheriza Razali ◽  
Arnaldo Marin ◽  
Ahmad Nuruddin ◽  
Helmi Shafri ◽  
Hazandy Hamid

Author(s):  
Cla´udio Henrique Lobianco Garcia Villela ◽  
Luiz de Carvalho Dias Correia

The main purpose of this job is to present the characteristics that influenced the elaboration of the Urucu-Manaus Gas Pipeline Project and the difference between this pipeline and other pipelines already installed on the Amazon region. In this project were emphasized the aspects related to the route definition, mapping technologies that had not been utilized in our pipeline projects, the crossing of vast flooded areas, requiring specific studies, as well the minimization of the environment impacts, in this case the existence of animal species present only in this region. Other differential factor was the Rio Negro crossing, where the pipeline will be installed in the riverbed. The know-how attained with this project consolidates ever so the activity of building pipelines in tropical forest regions.


2020 ◽  
Author(s):  
Anne Verhoef ◽  
Magna S. B. Moura ◽  
Rodolfo Nóbrega

<p>The Caatinga is a seasonally dry tropical forest, which is the dominant vegetation type in the northeastern region of Brazil. Its many plant species have adapted to the semiarid climate through different biophysical and physiological traits and drought survival strategies. In recent years, this region has endured a number of prolonged droughts that have adversely affected this already severely water-limited region. Despite the relatively small amounts of rainfall (with annual rainfall ranging approximately between 100–800 mm/year), there is an almost perpetual occurrence of clouds due to the regional atmospheric circulation; broadly speaking cumulus or cumulonimbus in the rainy season, and mostly stratocumulus during the transition from wet to dry, and dry seasons.  We studied the effect of cloud cover on the radiation balance, as well on the surface energy- and carbon balance of a pristine Caatinga area from 2011 to 2018.</p><p>This study used radiation and weather data obtained from a SONDA BSRN radiation station, as well from a flux tower installed in the study area; both were near the urban areaofPetrolina, Brazil. Furthermore, radio-sounding data collected nearby were employed to obtain column integrated atmospheric water vapour, to estimate atmospheric emissivity.</p><p>We derived cloudiness from a number of indirect methods (using shortwave- and longwave incoming radiation) at diurnal, seasonal and multi-year timescales. We also employed observed cloud cover data, including those from sky-cameras, for verification.</p><p>Estimates of clear-sky atmospheric emissivity were required to determine cloud cover.  These were obtained from well-known equations (e.g., Brunt, Brutsaert and Prata) using tower air temperature and/or vapour pressure; calibration of the constants in these equations was required and their performance varied considerably. Occasionally, there were large differences between column integrated atmospheric water vapour and near-surface humidity; this had implications for estimates of atmospheric emissivity and hence of cloud cover.</p><p>Seasonal variations in turbidity varied by a factor of 2. Clear-sky conditions occurred for between 8-18% of the time, with the lowest percentage occurring for the wettest year (2011).</p><p>Despite its considerable effect on the radiation balance, the variation in cloud cover had a relatively modest effect only on the energy- and carbon balance fluxes. This has implications for our understanding of the Caatinga vegetation functioning, as well as for the development and testing of land surface models for this ecosystem.</p><p>This work has been supported by The Natural Environment Research Council (NE/N012488/1) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (Caatinga-FLUX Phase 2 APQ 0062-1.07/15).</p>


2011 ◽  
Vol 11 (9) ◽  
pp. 26347-26413 ◽  
Author(s):  
G. Lin ◽  
J. E. Penner ◽  
S. Sillman ◽  
D. Taraborrelli ◽  
J. Lelieveld

Abstract. Recent experimental findings indicate that Secondary Organic Aerosol (SOA) represents an important and, under many circumstances, the major fraction of the organic aerosol burden. Here, we use a global 3-d model (IMPACT) to test the results of different mechanisms for the production of SOA. The basic mechanism includes SOA formation from organic nitrates and peroxides produced from an explicit chemical formulation, using partition coefficients based on thermodynamic principles. We also include the formation of non-evaporative SOA from the reaction of glyoxal and methylglyoxal on aqueous aerosols and cloud droplets as well as from the reaction of epoxides on aqueous aerosols. A model simulation including these SOA formation mechanisms gives an annual global SOA production of 113.5 Tg. The global production of SOA is substantially decreased to 85.0 Tg yr−1 if the HOx regeneration mechanism proposed by Peeters et al. (2009) is used. Model predictions with and without this HOx regeneration scheme are compared with multiple surface observation datasets, namely: the Interagency Monitoring of Protected Visual Environments (IMPROVE) for the United States, the European Monitoring and Evaluation Programme (EMEP) as well as Aerosol Mass Spectrometry (AMS) data measured in both Northern Hemisphere and tropical forest regions. All model simulations realistically predict the organic carbon mass observed in the Northern Hemisphere, although they tend to overestimate the concentrations in tropical forest regions. This overestimate may result from an unrealistically high uptake rate of glyoxal and methylglyoxal on aqueous aerosols and in cloud drops. The modeled OC in the free troposphere is in agreement with measurements in the ITCT-2K4 aircraft campaign over the North America and in pollution layers in Asia during the INTEX-B campaign, although the model underestimates OC in the free troposphere during the ACE-Asia campaign off the coast of Japan.


Sign in / Sign up

Export Citation Format

Share Document