scholarly journals Effects of L.plantarum dy-1 fermentation time on the characteristic structure and antioxidant activity of barley β-glucan in vitro

Author(s):  
Jiayan Zhang ◽  
Ping Wang ◽  
Cui Tan ◽  
Yansheng Zhao ◽  
Ying Zhu ◽  
...  
Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 372 ◽  
Author(s):  
Lavinia Florina Călinoiu ◽  
Adriana-Florinela Cătoi ◽  
Dan Cristian Vodnar

The purpose of our study was to evaluate the potential of solid-state yeast fermentation (SSYF) in improving the phenolic acid content and composition, and the antioxidant activity of commercial wheat bran (WB) and oat bran (OB). The ultrasound-assisted methanolic extracts were compared for their total phenolic content (TPC), phenolics composition, and in vitro antioxidant activity in order to study the effect of fermentation time on the chemical profile and activity of bioactive compounds. The comparative analysis revealed significant differences (p < 0.05) between days of fermentation (0 through 6). The highest TPCs were obtained on day 3 for WB (0.84 ± 0.05 mg of gallic acid equivalents [GAE]/g dry weight [DW]), and on day 4 for OB (0.45 ± 0.02 mg GAE/g DW). The highest relative percentage increase in the phenolics concentration of WB was also registered on day 3 (ferulic acid +56.6%, vanillic acid +259.3%, dihydroxybenzoic acids +161.2%, apigenin-glucoside +15.3%); for OB, this was observed on day 4 (avenanthramide 2f +48.5%, ferulic acid +21.2%). Enhanced antioxidant activities were significantly correlated with the highest TPCs. Our results suggest that SSYF may be a useful procedure for enrichment of antioxidants in cereal bran, considering the design of different functional foods and nutraceuticals.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
N Niciforovic ◽  
S Solujic ◽  
V Mihailovic ◽  
D Pavlovic-Muratspahic

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
E Eroğlu Özkan ◽  
N Özsoy ◽  
G Özhan ◽  
A Mat

2012 ◽  
Vol 2 (12) ◽  
pp. 58-59
Author(s):  
suvarna M N Vinay ◽  
◽  
Ramesh B S Ramesh B S ◽  
Venkatachalapathy R Venkatachalapathy R ◽  
Makari Hanumantappa K ◽  
...  

Author(s):  
Waras Nurcholis ◽  
Edy Djauhari Purwakusumah ◽  
Mono Rahardjo ◽  
Latifah K. Darusman

Temulawak (Curcuma  xanthorrhizaRoxb.) belongs to the family Zingiberaceae, has been empirically used as herbal medicines. The research was aimed to evaluate three promising lines of Temulawak based on their high bioactive contents (xanthorrhizol and curcuminoid) and its in vitro bioactivity (antioxidant and toxicity), and to obtain information on agrobiophysic environmental condition which produced high bioactive compounds. The xanthorrhizol and curcuminoid contents were measured by HPLC. In vitro antioxidant and toxicity were determined by DPPH (1,1-diphenyl-2-picryl-hydrazyl) method and BSLT (Brine Shrimp Lethality Test). The result showed that promising line A produced the highest yield of bioactive and bioactivity, i.e. 0.157 and 0.056 g plant-1of xanthorrizol and curcuminoid respectively. The IC50 of antioxidant activity was 65.09 mg L-1and LC50of toxicity was 69.05 mg L-1. In this study, Cipenjo had the best temulawak performance than two other locations. According to the agrobiophysic parameters, Cipenjo environmental condition was suitable for temulawak cultivation with temperature 28-34 ºC, rainfall ± 223.97 mm year-1 and sandy clay soil. Keywords: antioxidant, curcuminoid, promising lines, temulawak, xanthorrhizol


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


Sign in / Sign up

Export Citation Format

Share Document