scholarly journals Fully coupled hydromechanical model for compacted soils

2019 ◽  
Vol 347 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Hiram Arroyo ◽  
Eduardo Rojas
Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Rui Yang ◽  
Weiqun Liu ◽  
Tianran Ma ◽  
Junhe Xie ◽  
Yang Hu ◽  
...  

CO2 sequestration in coal seam has proved to be an effective way for reducing air pollution caused by greenhouse gases. A study on the rules of fluid transfer and reliability of CO2 storage during gas injection is necessary for the engineering application. However, the clarification of multifield coupling in long-term CO2 sequestration is the difficulty to solve the aforementioned problem. Previous investigations on the coupled model for CO2 storage in coal seam were not exactly comprehensive; for example, the multiphase flow in the fracture and the nonlinear behavior of gas diffusion were generally neglected. In this paper, a new multistage pore model of the coal matrix and the corresponding dynamic diffusion model were adopted. Meanwhile, the CO2-induced coal softening and the CO2-water two-phase flow in coal fracture were also taken into account. Subsequently, all the mentioned mechanisms and interactions were embedded into the coupled hydromechanical model, and this new fully coupled model was well verified by a set of experimental data. Additionally, through the model application for long-term CO2 sequestration, we found that the stored CO2 molecules are mainly in an adsorbed state at the early injection stage, while with the continuous injection of gas, the stored CO2 molecules are mainly in a free state. Finally, the roles of multiphase flow and gas dynamic diffusion on fluid transfer and coal behavior were analyzed. The results showed that the impact of multiphase flow is principally embodied in the area adjacent to the injection well and the coal seam with lower initial water saturation is more reliable for CO2 sequestration, while the impact of gas dynamic diffusion is principally embodied in the area far away from the injection well, and it is safer for CO2 sequestration in coal seam with greater attenuation coefficient of CO2 diffusion.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fei Liu ◽  
Zhifeng Luo ◽  
Yu Sang ◽  
Liqiang Zhao ◽  
Changlin Zhou

There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.


2011 ◽  
Author(s):  
Shuyi S. Chen ◽  
Mark A. Donelan ◽  
Ashwanth Srinivasan ◽  
Rick Allard ◽  
Tim Campbell ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 479d-479
Author(s):  
Michael Knee ◽  
Ruth Brake

In urban situations, particularly after construction, herbaceous ornamentals may be planted into soils that are compacted or have poor structure so that plant roots may encounter poor aeration or physical resistance. Low oxygen concentrations may be the most important aspect of poor aeration and are readily reproduced in the laboratory. High atmospheric pressure might be used to screen for the ability to grow against physical resistance. We tested the suggestion that “native” plants would grow better in compacted soils than typical bedding plants and for differences in tolerance to low oxygen or high pressure. Plants were grown from seed in the greenhouse at four levels of compaction in peat-based medium and in field soil. Shoot dry weights of the native plants Asclepias tuberosa, Echinacea purpurea, and Schizachyrium scoparius, were less affected by growth in compacted soil or peat medium than those of the bedding plants, Antirrhinum majus, Gypsophila elegans, Impatiens balsamina, Tagetes patula and Zinnia elegans. The oxygen content of media declined with compaction to a minimum of 10 kPa. Half maximal root elongation was observed at 1 to 3 kPa oxygen for most species without any separation between the groups. A presure of 1100 kPa reduced root elongation of the bedding plants by 50 to 70% but only 5 to 20% for the native plants.


Author(s):  
J. L. Mroginski ◽  
H. G. Castro ◽  
J. M. Podestá ◽  
P. A. Beneyto ◽  
A. R. Anonis

2020 ◽  
Vol 579 ◽  
pp. 411894
Author(s):  
Valerio Apicella ◽  
Carmine Stefano Clemente ◽  
Daniele Davino ◽  
Damiano Leone ◽  
Ciro Visone

Sign in / Sign up

Export Citation Format

Share Document