Weed-species dynamics and management in no-till and reduced-till fallow cropping systems for the semi-arid agricultural region of the Pacific Northwest, USA

2004 ◽  
Vol 23 (11) ◽  
pp. 1097-1110 ◽  
Author(s):  
F.L. Young ◽  
M.E. Thorne
2021 ◽  
Vol 5 ◽  
Author(s):  
Cedric Habiyaremye ◽  
Kurtis L. Schroeder ◽  
John P. Reganold ◽  
David White ◽  
Daniel Packer ◽  
...  

Barley (Hordeum vulgare L.) has a storied history as a food crop, and it has long been a dietary staple of peoples in temperate climates. Contemporary research studies have focused mostly on hulled barley for malt and animal feed. As such, nitrogen (N) and seeding rate agronomic data for naked food barley are lacking. In this study, we evaluated the effects of N on ß-glucan and protein content, and N and seeding rate on phenotypic characteristics of naked food barley, including grain yield, emergence, plant height, days to heading, days to maturity, test weight, percent plump kernels, and percent thin kernels. Experiments were conducted at two no-till farms, located in Almota, WA, and Genesee, ID, in the Palouse region of the Pacific Northwest from 2016 to 2018. The experiment comprised two varieties (“Havener” and “Julie”), employed N rates of 0, 62, 95, 129, and 162 kg N ha−1, and seeding rates of 250, 310, and 375 seeds/m−2. Increased N fertilization rate was shown to significantly increase all response variables, except β-glucan content of the variety Julie, days to heading, test weight, and percent plump and thin kernels. Increased N fertilization resulted in higher mean grain yield of Havener and Julie in both Almota and Genesee up to 95 kg N ha−1. Havener had higher yields (3,908 kg N ha−1) than Julie (3,099 kg N ha−1) across locations and years. Julie had higher β-glucan (8.2%) and protein (12.6%) content compared to Havener (β-glucan = 6.6%; protein = 9.1%). Our results indicate that β-glucan content is associated with genotype, environmental, and agronomic factors in dryland cropping systems of the Palouse.


cftm ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Frank L. Young ◽  
J. R. Alldredge ◽  
William L. Pan ◽  
Curtis Hennings

Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 885-890 ◽  
Author(s):  
Richard W. Smiley ◽  
Ruth G. Whittaker ◽  
Jennifer A. Gourlie ◽  
Sandra A. Easley

Associations between stunt nematodes and yield of no-till annual spring wheat (Triticum aestivum) were examined at two eastern Oregon locations. Geocenamus brevidens was the only species detected at one location and was mixed with Tylenchorhynchus clarus at another location. Six cultivars were planted with or without application of aldicarb during 2001. Inverse correlations between yield and stunt nematode density were significant at the G. brevidens-only site (P = 0.04) but not the G. brevidens + T. clarus site (P = 0.44). Yields were inversely correlated (P < 0.01) with stunt nematode populations at both sites during 2002. Aldicarb improved grain yields at both locations during 2001 (17 and 24%, P < 0.01) but not at the single location treated with aldicarb during 2002 (10%, P = 0.06). A lack of association between yield and T. clarus in 19 previously unreported experiments is discussed. Reduced wheat yield in response to stunt nematodes in Oregon is likely due to parasitism by G. brevidens and not T. clarus. This is the first report associating G. brevidens with suppression of wheat yield in the Pacific Northwest. Further studies are needed to define cropping systems and locations where G. brevidens may cause economic damage.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 389-394 ◽  
Author(s):  
W. F. Schillinger ◽  
T. C. Paulitz

The soilborne fungus Rhizoctonia solani AG-8 is a major concern for farmers who practice no-till in the inland Pacific Northwest of the United States. Bare patches caused by Rhizoctonia spp. first appeared in 1999 during year 3 of a 15-year no-till cropping systems experiment near Ritzville, WA (269 mm of annual precipitation). The extent and pattern of patches were mapped each year from 1999 to 2012 at the 8-ha study site with a backpack-mounted global positioning system equipped with mapping software. Bare patches appeared in winter and spring wheat (SW; Triticum aestivum), spring barley (SB; Hordeum vulgare), yellow mustard (Brassica hirta), and safflower (Carthamus tinctorius). At its peak in years 5 to 7, bare patches occupied as much as 18% of total plot area in continuous annual monoculture SW. The area of bare patches began to decline in year 8 and reached near zero levels by year 11. No measurable patches were present in years 12 to 15. Patch area was significantly greater in continuous SW compared with SW grown in a 2-year rotation with SB. Additionally, the 15-year average grain yield for SW in rotation with SB was significantly greater than for continuous SW. Russian thistle (Salsola tragus), a troublesome broadleaf weed with a fast-growing tap root, was the only plant that grew within patches. This article reports the first direct evidence of natural suppression of Rhizoctonia bare patch with long-term no-till in North America. This suppression also developed in a rotation that contained broadleaf crops (yellow mustard and safflower) in all but 5 years of the study, and the suppression was maintained when safflower was added back to the rotation.


2013 ◽  
Vol 53 ◽  
pp. 132-138 ◽  
Author(s):  
L.S. Sullivan ◽  
F.L. Young ◽  
R.W. Smiley ◽  
J.R. Alldredge

Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1662-1668 ◽  
Author(s):  
Richard W. Smiley ◽  
Jason G. Sheedy ◽  
Sandra A. Easley

Dryland field crops in the Pacific Northwest United States are commonly produced in silt loams infested by the root-lesion nematodes Pratylenchus neglectus and P. thornei. Soils at 30 sites in Oregon were sampled from 0 to 120 cm depth to examine the vertical distribution of these Pratylenchus spp. Both species were distributed through entire soil profiles of all cropping systems. Populations were generally greatest in the surface 30 cm, but sometimes high populations were detected at depths greater than 45 cm. Sampling to 30 cm depth allowed detection of more than 50% of the population in most sites, while sampling to 45 cm depth yielded more than 75% of the population in over 75% of the sites evaluated. Therefore, soil samples should be collected to 30 to 45 cm depth to accurately estimate populations of Pratylenchus spp. in dryland crops produced on silt loams in the Pacific Northwest. Populations of Pratylenchus spp. were found to be related to the most recently planted crop, with populations after barley, after wheat, and during summer fallow being detected in ascending order.


Sign in / Sign up

Export Citation Format

Share Document