scholarly journals Weed management in no-till winter wheat (Triticum aestivum L.)

2010 ◽  
Vol 29 (1) ◽  
pp. 1-6 ◽  
Author(s):  
José M.G. Calado ◽  
Gottlieb Basch ◽  
Mário de Carvalho
1992 ◽  
Vol 72 (3) ◽  
pp. 965-972 ◽  
Author(s):  
D. K. Tompkins ◽  
D. B. Fowler ◽  
A. T. Wright

Agronomic practices must be modified to maximize winter wheat (Triticum aestivum L.) yield in different environments. Changes in crop management may modify the microclimate within the crop canopy thereby influencing the development of foliar pathogens. This study was initiated to determine the effect of cultivar, nitrogen (N) fertility, seed rate (SR) and row spacing (RS) on the severity of powdery mildew (Erysiphe graminis DC f.sp. tritici E. Marchal) on the upper leaves of no-till winter wheat grown in the Saskatchewan Parkland region. Average powdery mildew (PM) severity was greater on the upper leaves of the semi-dwarf cultivar Norwin than on the tall cultivar Norstar and increased under conditions of high N fertility. The use of 36 cm RS and 140 kg ha−1 SR compared to 9 cm RS and 35 kg ha−1 SR also resulted in increased PM severity. In general, wide RS enhanced spore dispersal and disease progress up the plant while high SR created a more favourable crop canopy microclimate for PM development once the pathogen was established on a leaf.Key words: Wheat (winter). Triticum aestivum L., no-till, powdery mildew, Erysiphe graminis, row spacing, seed rate, nitrogen fertilizer


2019 ◽  
Vol 23 (1) ◽  
pp. 39-46
Author(s):  
Hazzar Habbib ◽  
Bertrand Hirel ◽  
Fabien Spicher ◽  
Frédéric Dubois ◽  
Thierry Tétu

1994 ◽  
Vol 74 (1) ◽  
pp. 193-197 ◽  
Author(s):  
H. A. Loeppky ◽  
D. A. Derksen

Quackgrass [Elytrigia repens (L.) Nevski] is a widespread perennial weed traditionally controlled by tillage, a practice which can contribute to soil erosion and degradation. This study was initiated to determine the impact of integrated weed management strategies utilizing crop rotation, conservation tillage, and postemergence herbicides on quackgrass. Rotations of tall and semi-dwarf winter wheat (Triticum aestivum L. 'Norstar' and 'Norwin') or spring wheat (Triticum aestivum L. 'Katepwa' and 'HY320') with mustard (Brassica juncea 'Common Brown') and flax (Linum usitatissimum L. 'Norlin') were conducted at Indian Head, Saskatchewan for 4 yr to determine their effect on quackgrass shoot density, rhizome dry weight and rhizome node density. The presence or absence of winter wheat within the crop rotation had the greatest impact on quackgrass growth. During years when drought hampered winter wheat establishment, quackgrass growth was greater in winter wheat than in spring wheat, but under conditions favoring winter wheat establishment, the opposite occurred. Quackgrass growth in standard height wheat was similar to semi-dwarf wheat. Annual differences in quackgrass growth occurred between mustard and flax, but overall, no trend developed. Shoot density, rhizome biomass, and rhizome node density were not consistently correlated to crop yield. Crop rotation is a useful component of an integrated quackgrass management system. Key words: Integrated weed management (IWM), quackgrass, Elytrigia repens, crop rotation, conservation tillage


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2047
Author(s):  
Matthew R. Ryan ◽  
Sandra Wayman ◽  
Christopher J. Pelzer ◽  
Caitlin A. Peterson ◽  
Uriel D. Menalled ◽  
...  

Mulch from cover crops can effectively suppress weeds in organic corn (Zea mays L.) and soybean (Glycine max L.) as part of cover crop-based rotational no-till systems, but little is known about the feasibility of using mulch to suppress weeds in organic winter small grain crops. A field experiment was conducted in central NY, USA, to quantify winter wheat (Triticum aestivum L.) seedling emergence, weed and crop biomass production, and wheat grain yield across a gradient of mulch biomass. Winter wheat seedling density showed an asymptotic relationship with mulch biomass, with no effect at low rates and a gradual decrease from moderate to high rates of mulch. Selective suppression of weed biomass but not wheat biomass was observed, and wheat grain yield was not reduced at the highest level of mulch (9000 kg ha−1). Results indicate that organic winter wheat can be no-till planted in systems that use mulch for weed suppression. Future research should explore wheat tolerance to mulch under different conditions, and the potential of no-till planting wheat directly into rolled-crimped cover crops.


Author(s):  
A. Yu. Egovtseva ◽  
T. N. Melnichuk ◽  
S. F. Abdurashitov

The use of microbial preparations contributed to a change in the taxonomic structure of winter wheat rhizosphere microbiome was established. A more significant effect of microbial preparations was noted under no-till technology on the structure of the microbiome than with the traditional farming system.


2021 ◽  
Vol 2 ◽  
Author(s):  
Eric A. L. Jones ◽  
Zachary R. Taylor ◽  
Wesley J. Everman

Italian ryegrass is consistently ranked as one of the most problematic weeds of winter wheat in the Southeastern United States. To determine the distribution of resistant Italian ryegrass biotypes, seed was collected from locations throughout North Carolina and screened with diclofop, pinoxaden, mesosulfuron, and pyroxsulam. Results identified evidence of resistance to diclofop at all locations sampled throughout the state. Resistance to mesosulfuron, pyroxsulam, and pinoxaden were confirmed in 11, 19, and five percent of sampled locations, respectively. Additionally, Italian ryegrass biotypes resistant to multiple and all herbicides tested were identified, eliminating POST herbicide application as an option for control. Adjusting tillage practices may be an option for sustainable weed management to maintain effective control and maximize crop yield. Companion studies were established in the Coastal Plain and Piedmont regions of North Carolina in 2013 and 2014 to evaluate the effect of tillage on Italian ryegrass efficacy with herbicides. Herbicide treatments consisted of pyroxasulfone PRE only, mesosulfuron, or pinoxaden and POST only applications of mesosulfuron plus pyroxasulfone or pinoxaden plus pyroxasulfone. Tillage treatments included no-till and conservation tillage. Treatments containing pinoxaden provided the greatest Italian ryegrass control, regardless of tillage system. The use of pyroxasulfone PRE controlled a higher percentage of Italian ryegrass in the Piedmont when compared to the Coastal Plain, which is believed to be due to multiple flushes during the growing season in the Coastal Plain. Herbicide treatment was still a significant factor in Italian ryegrass control, but Italian ryegrass seed head density was consistently lower in the no-till system. Tillage may be stimulating germination, allowing greater control with PRE herbicides. An integrated system of herbicides and tillage may allow for greater yield and reduce selection pressure on POST herbicides.


1990 ◽  
Vol 70 (2) ◽  
pp. 215-225 ◽  
Author(s):  
J. M. CAREFOOT ◽  
C. W. LINDWALL ◽  
M. NYBORG

Differential N immobilization between conventional tillage (CT) and no-till (NT) systems has been suggested as a possible mechanism for differences in crop response to N. To examine this effect, immobilization of N fertilizer was compared in NT and CT cereal production systems at two sites in southern Alberta (Lethbridge and Vauxhall) from 1983 to 1985. Fertilizer N, labelled with 15N, was applied at rates ranging from 25 to 50 kg N ha−1 to winter wheat (Triticum aestivum L. 'Norstar'), barley (Hordeum vulgare L. 'Galt'), or spring wheat (Triticum aestivum L. 'Chester') in various rotations. Nitrogen immobilization was subsequently quantified by 15N analysis of crop tissues and soil N fractions. The amount of N immobilized was strongly influenced by climatic variables. In 1984, characterized by drought in the spring but significant precipitation during June, mean N immobilization losses for winter wheat and barley in the CT treatments averaged much less than those in NT treatments (20 vs. 34% of N applied). Conversely, in 1985, which was characterized by a wet spring and a very dry summer, N immobilization losses were comparable in the two barley tillage treatments (mean = 29% of N applied). Lack of precipitation early in the season appears to restrict immobilization less in CT than in NT treatments because of greater fertilizer-residue contact in the latter. Despite the trends in immobilized N, grain yields were often higher in the NT than in the CT treatments, indicating that yield differences were likely related to the availability of moisture rather than to N fertility. Restricted N availability resulting from immobilization losses, however, reduced grain N concentration in NT relative to CT treatments. Key words: No-till, conventional till, N immobilization, N response, residual N


Sign in / Sign up

Export Citation Format

Share Document