Timing the application of Bacillus subtilis QST 713 in the integrated management of the postharvest decay of mango fruits

2019 ◽  
Vol 121 ◽  
pp. 51-56 ◽  
Author(s):  
Carlos A.T. Gava ◽  
Ítala Layanne S. Alves ◽  
Naiane Cirila Duarte
2020 ◽  
Vol 20 (2) ◽  
pp. 207-220
Author(s):  
Carvalho Castro ◽  
Tavares ◽  
Araújo ◽  
da Paz ◽  
Gava

Botryosphaeriacean fungi usually cause mango rot in the tropics. They cause quiescent infections, and symptoms are detectable only in advanced stages of fruit ripening, imposing that control strategies begin in preharvest. Biocontrol is one of the few alternatives to control postharvest decay of mango in organic or biological production. However, there is very few research specifically designed for organic mango production. The objective of this study was to evaluate four yeast strains applied in individual formulations to control postharvest decay of mango, as part of the integrated management of postharvest fruit rot decay using preharvest spraying in an organic orchard. In a first experiment, the antagonist yeast strains Saccharomyces cerevisiae ESA45, Saccharomyces sp. ESA46, Saccharomyces sp. ESA47, and Pichia kudriavzevii CMIAT171 were applied to artificial wounds in organic mango fruits inoculated with propagule suspensions of virulent strains of Lasiodiplodia theobromae and Neofusicoccum parvum. All treatments significantly increased the period until the detection of rot symptoms and reduced rot severity. Formulations containing starch+carboxymethyl celullose and the yeast strains were applied in two different production cycles (2014 and 2015/16) in a semi-commercial organic orchard. All treatments significantly reduced mango rot. Field spraying of Pichia kudriavzevii CMIAT171 reduced disease index in 69.4% in an average for the two years.


2020 ◽  
Vol 8 (1) ◽  
pp. 371
Author(s):  
Brenda Tortelli ◽  
Suelen Cappellaro ◽  
Júlia Andrade ◽  
Márcio Paulo Mezomo ◽  
Péricles Roberto Steffen ◽  
...  

Considering the importance of bean cultivation, the objective was to prove the effectiveness of the seed microbiolization method in the control of Sclerotinia sclerotiorum (Ss) on black bean seeds (cv. IPR Tuiuiú), inoculated by the water restriction method. The treatments were fungicide methyl thiophanate + fluazinam (350.0 g L-1 + 52.5 g L-1); Trichoderma asperellum BV-10 (1.0 x 1010 viable conidia mL-1); T. harzianum strain CCT 7589 (1 x 109 CFUs L-1); Bacillus subtilis BV-02 (minimum 3.0 x 109 CFU mL-1); B. amyloliquefaciens isolated BV03 (minimum 3.0 x 109 CFU L-1); Positive control (seeds exposed to Ss); Negative control (NC) + fungicide; NC + T. asperellum; NC + T. harzianum; NC + B. subtilis; NC + B. subtilis; and NC (PDA medium plus restricting). To verify the effects on germination, vigor, and the health of bean seeds, and seedling emergence in the field. Microbiolization with T. asperellum and T. harzianum, provides improvement in germination, vigor, and health, but is not superior to fungicide treatment. Bacillus subtilis and B. amyloliquefaciens, in seeds not inoculated with the pathogen, produce the best results for green and dry mass (g). These may be used in the integrated management of white bean mold.


Author(s):  
Dwight Anderson ◽  
Charlene Peterson ◽  
Gursaran Notani ◽  
Bernard Reilly

The protein product of cistron 3 of Bacillus subtilis bacteriophage Ø29 is essential for viral DNA synthesis and is covalently bound to the 5’-termini of the Ø29 DNA. When the DNA-protein complex is cleaved with a restriction endonuclease, the protein is bound to the two terminal fragments. The 28,000 dalton protein can be visualized by electron microscopy as a small dot and often is seen only when two ends are in apposition as in multimers or in glutaraldehyde-fixed aggregates. We sought to improve the visibility of these small proteins by use of antibody labeling.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
N Padilla-Montaño ◽  
IL Bazzocchi ◽  
L Moujir

2018 ◽  
Vol 22 (02) ◽  
pp. 82-89
Author(s):  
Friedrich von Rheinbaben ◽  
Oliver Riebe ◽  
Johanna Köhnlein ◽  
Sebastian Werner

ZusammenfassungZentrales Bauteil des Genius® 90 Therapie Systems ist der sogenannte Genius-Tank, dem die frische Dialyseflüssigkeit entnommen und in den die verbrauchte Lösung nach der Dialyse zurückgeführt wird. Daher kommt der sicheren Aufbereitung des Systems eine besondere Bedeutung zu. Hierfür wird ein Aufbereitungsverfahren unter Verwendung von UV-Licht in Kombination mit einem chemischen Desinfektionsmittel angewendet. Ziel der hier beschriebenen Untersuchung war es, die Wirkungsbreite und Wirkungstiefe dieses Aufbereitungsverfahrens unter praxisnahen Phase-3-Bedingungen zu ermitteln. Dazu wurde das Gerät mit Mikroorganismen und Viren künstlich kontaminiert und die Wirkung der einzelnen Verfahrensschritte ermittelt. Im Gegensatz zu der üblichen Vorgehensweise praxisnaher Untersuchungen machen Aufbereitungsverfahren medizinischer Geräte unter Phase-3-Kriterien meist eine neuartige Arbeitsweise erforderlich – im Falle der hier vorgestellten Untersuchung sogar die Konstruktion eines speziellen Geräts zur Platzierung von Keimträgen im Genius-Tank. Im Ergebnis konnte gezeigt werden, dass bereits UV-Licht allein sowie in Kombination mit einem chemischen Desinfektionsmittel unter praxisnahen Bedingungen eine sichere Wirksamkeit gegen Bakterien (Pseudomonas aeruginosa) und bakterielle Sporen (Bacillus subtilis), Schimmelpilze (Aspergillus brasiliensis) und Viren (Murines Parvovirus) besitzt.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
L Moujir ◽  
L de León ◽  
IL Bazzocchi

Sign in / Sign up

Export Citation Format

Share Document