scholarly journals Numerical model of formation of a 3-D strike-slip fault system

2016 ◽  
Vol 348 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Alexandre I. Chemenda ◽  
Olivier Cavalié ◽  
Mathilde Vergnolle ◽  
Stéphane Bouissou ◽  
Bertrand Delouis
2018 ◽  
Author(s):  
Emanuela Falcucci ◽  
Maria Eliana Poli ◽  
Fabrizio Galadini ◽  
Giancarlo Scardia ◽  
Giovanni Paiero ◽  
...  

Abstract. We investigated the eastern corner of northeastern Italy, where the NW-SE trending dextral strike-slip fault systems of western Slovenia intersects the south-verging fold and thrust belt of the eastern Southern Alps . The area suffered the largest earthquakes of the region, among which are the 1511 (Mw 6.3) event and the two major shocks of the 1976 seismic sequence, with Mw = 6.4 and 6.1 respectively. The Colle Villano thrust and the Borgo Faris-Cividale strike-slip fault have been first analyzed by interpreting industrial seismic lines and then by performing morpho-tectonic and paleoseismological analyses. These different datasets indicate that the two structures define an active, coherent transpressive fault system that activated twice in the past two millennia, with the last event occurring around the 15th–17th century. The chronological information, and the location of the investigated fault system suggest its activation during the 1511 earthquake.


Geology ◽  
2004 ◽  
Vol 32 (10) ◽  
pp. 837 ◽  
Author(s):  
Charles K. Wilson ◽  
Craig H. Jones ◽  
Peter Molnar ◽  
Anne F. Sheehan ◽  
Oliver S. Boyd

1998 ◽  
Vol 145 (1-2) ◽  
pp. 105-114 ◽  
Author(s):  
Philippe Muchez ◽  
Manuel Sintubin

Author(s):  
Sjors H. J. van Es ◽  
Arnold M. Gresnigt

Buried steel pipelines for water and hydrocarbon transmission in seismic regions may be subjected to large imposed deformations. When a buried pipeline crosses an active strike-slip fault, the relative motion of the two soil bodies in which is it embedded can lead to significant deformation of the pipeline and possibly to loss of containment. To be able to fully understand the effects of this movement and the interaction between pipe and soil on the strain demands in the pipeline, a novel full scale experimental setup has been developed. To allow accurate monitoring of the pipeline deformation, the pipe-surrounding soil has been replaced with appropriate nonlinear springs, leaving the pipe bare during the experiment. In a total of ten tests, the strain demand in a pipeline as a result of these ground-induced deformations has been investigated. The testing program includes variations of pipeline geometry, steel grade and internal pressure. Furthermore, cohesive and non-cohesive soils have been simulated in the tests. Observed responses of the pipeline include local buckling, high tensile strains (up to 5%) and, in one case, cracking of the pipeline. Based on experiences with these experiments, a numerical model has been developed that uses non-linear springs to model the pipe-soil interaction. By modelling the pipe and soil conditions that were simulated in the ten experiments, this model has been calibrated and validated. Comparisons between the model predictions and test results show that the numerical model is able to predict the deformational behavior of the pipeline accurately. Moreover, also the formation of local buckles is predicted with satisfying results. The results of the validation operation lead to the conclusion that the new model is performing well. By omitting the modelling of the full soil body, computation time is reduced, increasing practical use of the developed model.


Sign in / Sign up

Export Citation Format

Share Document