scholarly journals The Effect of Metal and Polypropylene Fiber on Technological and Physical Mechanical Properties of Activated Cement Compositions

Author(s):  
Ibragimov Ruslan ◽  
Bogdanov Ruslan ◽  
Korolev Evgenij
2011 ◽  
Vol 477 ◽  
pp. 274-279 ◽  
Author(s):  
Yi Xu ◽  
Lin Hua Jiang ◽  
Hong Qiang Chu ◽  
Lei Chen

In this study, the effects of fiber types on the mechanical properties of lightweight aggregate concretes were investigated. Three types of fibers, namely, polypropylene fiber, steel fiber and water hyacinth (Eichhornia crassipes) fiber, and two types of lightweight aggregates, namely, expanded polystyrene and ceramsite were used. The compressive strength and splitting tensile strength of concretes were tested. The results show that both the compressive strength and the splitting tensile strength were improved by adding a reasonable volume of steel fiber and polypropylene fiber into LWAC. The addition of water hyacinth fiber had little effect on the compressive strength of LWAC, while a little increase was observed in the splitting tensile strength.


Author(s):  
Moein Khoshroo ◽  
Ali Akbar Shirzadi Javid ◽  
Nima Rajabi Bakhshandeh ◽  
Mohamad Shalchiyan

In this study, the effect of using crumb rubber and recycled aggregates on the mechanical properties of concrete has been evaluated as areplacement of fine and coarse aggregates In order to add the admixtures and evaluate their combined effect, 20 different types of concrete mixture ratio were prepared. The results indicated that in those samples containing crumb rubber and recycled aggregates the compressive strength is reduced and adding fiber up to 0.1%. to these concrete samples can improve the compressive strength Also, the tensile strength of the samples mixed with crumb rubber and recycled aggregates were decreased, and with the addition of propylene fiber up to 0.4%. the tensile strength slightly increased Moreover by adding the crumb rubber to the samples the elasticity modulus was reduced but by adding fiber to samples about 0.1% and 0.2.% the modulus of elasticity of concrete in all samples were increased. According to the results, it can be said that using the combination of 5% of crumb rubber as a replacement of fine aggregate, and the combination of 35% of recycled aggregates as a replacement of coarse aggregate, and also by adding 0.1% polypropylene fiber in volumetric percentage of concrete along with adding 7% of micro silica as a replacement of cement led to the best effect on the mechanical properties of concrete.


2018 ◽  
Vol 203 ◽  
pp. 06011
Author(s):  
Saeed Ahmad ◽  
Ayub Elahi ◽  
Hafiz Waheed Iqbal ◽  
Faiza Mehmood

The objective of this research work was to determine the effect of fiber cocktail on mechanical properties of concrete. Three types of fibers were used namely monofilament polypropylene fiber, steel fiber and glass fiber. Steel and glass fiber were incorporated in concrete at different dosages while the content of Polypropylene fiber was kept constant. For this purpose, cubes (150×150×150mm) and prisms (101×101×508mm) were casted for compressive strength test on cubes and Two-Point load test on prisms. Eighteen different mixes were prepared such as control mix, single fiber concrete, double hybrid concrete and triple hybrid concrete. It was observed that both compressive and flexural strength increased with addition of single, double and triple fibers. However, the strengths of triple hybrid concrete were observed to be lesser as compared to single and double hybrid concrete.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1827 ◽  
Author(s):  
Marcin Małek ◽  
Mateusz Jackowski ◽  
Waldemar Łasica ◽  
Marta Kadela

High-performance concrete has low tensile strength and brittle failure. In order to improve these properties of unreinforced concrete, the effects of adding recycled polypropylene fibers on the mechanical properties of concrete were investigated. The polypropylene fibers used were made from recycled plastic packaging for environmental reasons (long degradation time). The compressive, flexural and split tensile strengths after 1, 7, 14 and 28 days were tested. Moreover, the initial and final binding times were determined. This experimental work has included three different contents (0.5, 1.0 and 1.5 wt.% of cement) for two types of recycled polypropylene fibers. The addition of fibers improves the properties of concrete. The highest values of mechanical properties were obtained for concrete with 1.0% of polypropylene fibers for each type of fiber. The obtained effect of an increase in mechanical properties with the addition of recycled fibers compared to unreinforced concrete is unexpected and unparalleled for polypropylene fiber-reinforced concrete (69.7% and 39.4% increase in compressive strength for green polypropylene fiber (PPG) and white polypropylene fiber (PPW) respectively, 276.0% and 162.4% increase in flexural strength for PPG and PPW respectively, and 269.4% and 254.2% increase in split tensile strength for PPG and PPW respectively).


2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


2019 ◽  
Vol 225 ◽  
pp. 983-996 ◽  
Author(s):  
F.M. Zahid Hossain ◽  
Md. Shahjalal ◽  
Kamrul Islam ◽  
Mohammad Tiznobaik ◽  
M. Shahria Alam

Sign in / Sign up

Export Citation Format

Share Document