scholarly journals Characteristics of Recycled Polypropylene Fibers as an Addition to Concrete Fabrication Based on Portland Cement

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1827 ◽  
Author(s):  
Marcin Małek ◽  
Mateusz Jackowski ◽  
Waldemar Łasica ◽  
Marta Kadela

High-performance concrete has low tensile strength and brittle failure. In order to improve these properties of unreinforced concrete, the effects of adding recycled polypropylene fibers on the mechanical properties of concrete were investigated. The polypropylene fibers used were made from recycled plastic packaging for environmental reasons (long degradation time). The compressive, flexural and split tensile strengths after 1, 7, 14 and 28 days were tested. Moreover, the initial and final binding times were determined. This experimental work has included three different contents (0.5, 1.0 and 1.5 wt.% of cement) for two types of recycled polypropylene fibers. The addition of fibers improves the properties of concrete. The highest values of mechanical properties were obtained for concrete with 1.0% of polypropylene fibers for each type of fiber. The obtained effect of an increase in mechanical properties with the addition of recycled fibers compared to unreinforced concrete is unexpected and unparalleled for polypropylene fiber-reinforced concrete (69.7% and 39.4% increase in compressive strength for green polypropylene fiber (PPG) and white polypropylene fiber (PPW) respectively, 276.0% and 162.4% increase in flexural strength for PPG and PPW respectively, and 269.4% and 254.2% increase in split tensile strength for PPG and PPW respectively).

2015 ◽  
Vol 10 (4) ◽  
pp. 155892501501000
Author(s):  
Ramesh Kanagavel ◽  
K. Arunachalam

Mechanical properties of quaternary blending cement concrete reinforced with hybrid fibers are evaluated in this experimental study. The steel fibers were added at volume fractions of 0.5%, 1%, and 1.5 % and polypropylene fibers were added at 0.25% and 0.5% by weight of cementitious materials in the concrete mix individually and in hybrid form to determine the compressive strength, split tensile strength, flexural strength and impact resistance for all the mixes. The experimental results revealed that fiber addition improves the mechanical properties and also the ductility and energy absorption of the concrete. The results also demonstrate that the hybrid steel – polypropylene fiber reinforced concrete performs better in compressive strength, split tensile strength, flexural strength and impact resistance than mono steel and mono polypropylene fiber reinforced concrete.


2016 ◽  
Vol 11 (3) ◽  
pp. 155892501601100 ◽  
Author(s):  
Ramesh Kanagavel ◽  
K. Arunachalam

Mechanical properties of quaternary blending cement concrete reinforced with hybrid fibers are evaluated in this experimental study. The steel fibers were added at volume fractions of 0.5%, 1%, and 1.5 % and polypropylene fibers were added at 0.25% and 0.5% by weight of cementitious materials in the concrete mix individually and in hybrid form to determine the compressive strength, split tensile strength, flexural strength and impact resistance for all the mixes. The experimental results revealed that fiber addition improves the mechanical properties and also the ductility and energy absorption of the concrete. The results also demonstrate that the hybrid steel – polypropylene fiber reinforced concrete performs better in compressive strength, split tensile strength, flexural strength and impact resistance than mono steel and mono polypropylene fiber reinforced concrete.


2011 ◽  
Vol 99-100 ◽  
pp. 1233-1238
Author(s):  
Hong Xiu Du ◽  
Yi Xiao Qin ◽  
Wei Zhang ◽  
Ning Zhang ◽  
Xiao Yu Hao

The mechanics properties of HPC mixing different dosage and length of polypropylene fiber were investigated in this study. The results showed that the addition of appropriate amount and length of polypropylene fibers in HPC led to an effective improvement in the tensile strength and a little change in the compressive strength of HPC. The pronounced improvement can be attributed to the beneficial effect of polypropylene fiber on HPC by restraining the generation and development of the micro cracks in concrete, enhancing the level of stress and deformation and damage characteristics in HPC, furthermore, extending the durability and safety of concrete structure.


2007 ◽  
Vol 280-283 ◽  
pp. 1765-1770 ◽  
Author(s):  
Feng Xing ◽  
Fa Guang Leng ◽  
Wei Wen Li

Polypropylene fiber is a new measure to prevent plastic cracks of concrete. Effects of the parameters, such as dosage and types of fibers, on the plastic cracks were studied systematically. The properties of cracking resistance of mortar, ordinary concrete and high performance concrete were investigated by using samples of two types in shape. The results show that: (1) polypropylene fibers may increase the cracking resistance of concrete further; (2) as smaller quantity of cement and higher quantity of aggregate as possible should be used to prevent concrete form cracking; (3) the main reason why polypropylene fibers increase cracking resistance of concrete is that they increase strain capacity of concrete at early age, decrease shrinkage strain, improve plastic tensile strength and decrease tensile stress of the capillary.


2012 ◽  
Vol 430-432 ◽  
pp. 1064-1067
Author(s):  
Yu Zhi Chen ◽  
Wei Hong Xuan ◽  
Xiao Hong Chen

The effect of the different addition amounts of polypropylene fibers on the basic mechanical properties of concrete were investigated in this paper. The results show that the flexural tensile strength of concrete changed slightly after adding low-dosage polypropylene fiber(0.04%~0.16%); Axial compressive strength and flexural tension modulus decreased, limiting flexural strain increased gradually with the amounts of fibers rising.


Author(s):  
Faiq M. Al-Zwainy ◽  
Hussam k. Risan ◽  
Rana I. K. Zaki

The purpose of this study was to conduct a meta-analysis that shows the influence of fiber on ultimate compressive strength and tensile strength of ultra-high performance concrete. The internet scholarly search engines and ScienceDirect article references were used to illustrate the papers concerning the experimental investigations of mechanical properties of ultra-high strength concrete with and without fiber with clearly, completely and comparative raw data. The normal concrete test results were dismissed from this search. Seven trials were identified based on the adopted inclusion and exclusion criteria above. The meta-analysis based on standardized mean difference was carried out on the basis of a fixed-effects model for the major outcomes of the ultimate compressive and tensile properties of ultra-high performance concrete. A total of 888 test specimens were enrolled in these seven trials. The combined analysis yielded a sign of a significant improvement in ultimate compressive strength and tensile strength of ultra-high strength concrete with fiber addition of 2% by concrete volume. The summary effect size of ultimate compressive strength was 2.34 while a more improvement in term of tensile strength with effect size of 2.64. By addition fiber of 2% provides a significant benefit in mechanical properties of ultra-high performance concrete.


2019 ◽  
Vol 9 (8) ◽  
pp. 1602 ◽  
Author(s):  
Ditao Niu ◽  
Daguan Huang ◽  
Hao Zheng ◽  
Li Su ◽  
Qiang Fu ◽  
...  

This study investigates the effects of basalt–polypropylene fibers on the compressive strength and splitting tensile strength of concrete and calculates the fractal dimension of the pore structure of concrete by using a fractal model based on the optical method. Test results reveal that hybrid fibers can improve the compressive strength and splitting tensile strength of concrete, and the synergistic effect of the hybrid fibers is strongest when the contents of basalt fiber (BF) and polypropylene fiber (PF) are 0.05% each, and that the maximum increments in compressive strength and splitting tensile strength are 5.06% and 9.56%, respectively. The effect of hybrid fibers on splitting tensile strength is greater than on compressive strength. However, hybrid fibers have adverse effects on mechanical properties when the fiber content is too high. The pore structure of basalt–polypropylene fiber-reinforced concrete (BPFRC) exhibits obvious fractal characteristics, and the fractal dimension is calculated to be in the range of 2.297–2.482. The fractal dimension has a strong correlation with the air content and spacing factor: the air content decreases significantly whereas the spacing factor increases with increasing fractal dimension. In addition, the fractal dimension also has a strong positive correlation with compressive strength and splitting tensile strength. Therefore, the fractal dimension of the pore structure can be used to evaluate the microscopic pore structure of concrete and can also reflect the influence of the complexity of the pore structure on the macroscopic mechanical properties of concrete.


2014 ◽  
Vol 982 ◽  
pp. 119-124 ◽  
Author(s):  
Tomáš Vavřiník ◽  
Jan Zatloukal

This paper describes influence of different mechanical properties to the concrete penetration resistance. The resistance is evaluated on the basis of the presented experimental program. In the experiment, non-deformable ogive-nose projectiles with diameter of 7.92 mm and mass of 8 g with impact velocity of about 700 m/s were hitting center of the specimens. Determination of the concrete penetration resistance was than based on projectile residual velocity obtained from high-speed camera record. The specimens were made from high strength concrete, steel fiber-reinforced concrete, ultra-high performance concrete and ultra-high performance fiber-reinforced concrete with different fiber content. The concrete penetration resistance was evaluated on total 32 specimens. Influence of mechanical properties, addition of coarse aggregate and steel fibers were discussed. Mechanical properties of the tested materials were investigated on total 125 specimens. Data from the measurements were used for creation of new RHT concrete models in Autodyn. In order to confirm experiment's setup and results, numerical analysis was performed in Autodyn. Results of the numerical simulations were compared to the experimental program.


Sign in / Sign up

Export Citation Format

Share Document