heterogeneous models
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 49)

H-INDEX

18
(FIVE YEARS 3)

Lithosphere ◽  
2022 ◽  
Vol 2022 (Special 4) ◽  
Author(s):  
Jie Ren ◽  
Yuan Wang ◽  
Di Feng ◽  
Jiakun Gong

Abstract Deep saline aquifers have strong heterogeneity under natural conditions, which affects the migration of carbon dioxide (CO2) injection into the reservoir. How to characterize the heterogeneity of rock mass is of great significance to research the CO2 migration law during CO2 storage. A method is proposed to construct different heterogeneous models from the point of view of whether the amount of data is sufficient or not, the wholly heterogeneous model with sufficient data, the deterministic multifacies heterogeneous model which is simplified by lithofacies classification, and the random multifacies heterogeneous model which is derived from known formation based on transfer probability theory are established, respectively. Numerical simulation is carried out to study the migration law of CO2 injected into the above three heterogeneous models. The results show that the migration of CO2 in heterogeneous deep saline aquifers shows a significant fingering flow phenomenon and reflect the physical process in CO2 storage; the migration law of CO2 in the deterministic multifacies heterogeneous model is similar to that in the wholly heterogeneous model and indicates that the numerical simulation of simplifying the wholly heterogeneous structure to the lithofacies classification structure is suitable for simulating the CO2 storage process. The random multifacies heterogeneous model based on the transfer probability theory accords with the development law of sedimentary formation and can be used to evaluate the CO2 migration law in unknown heterogeneous formations. On the other hand, by comparing the dry-out effect of CO2 in different heterogeneous models, it is pointed out that the multifacies characterization method will weaken the influence due to the local homogenization of the model in small-scale research; it is necessary to refine the grid and subdivide the lithofacies of the local key area elements to eliminate the research error. The research results provide feasible references and suggestions for the heterogeneous modeling of the missing data area and the simplification of large-scale heterogeneous models.


Author(s):  
Laura Zamudio González

Abstract Intergovernmental, regional, and international organizations play an active role in the governance of transnational crises. In the context of the COVID-19 pandemic in Latin America, the World Health Organization and the Pan-American Health Organization have been linked with multiple actors and levels of decision-making, putting into practice what the literature on global governance refers to as indirect governance by orchestration. This article shows that, in practice, the mechanisms of orchestration have established heterogeneous models of coordination and action that, in situations of transnational crisis, allow these organizations to bring together resources, capacities, and authority.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 482
Author(s):  
Dharmendra Kumar ◽  
Arun Singh ◽  
Mohammad Israil

The magnetotelluric (MT) method is one of the useful geophysical techniques to investigate deep crustal structures. However, in hilly terrains, e.g., the Garhwal Himalayan region, due to the highly undulating topography, MT responses are distorted. Such responses, if not corrected, may lead to the incorrect interpretation of geoelectric structures. In the present paper, we implemented terrain corrections in MT data recorded from the Garhwal Himalayan Corridor (GHC). We used AP3DMT, a 3D MT data modeling and inversion code written in the MATLAB environment. Terrain corrections in the MT impedance responses for 39 sites along the Roorkee–Gangotri profile in the period range of 0.01 s to 1000 s were first estimated using a synthetic model by recording the topography and locations of MT sites. Based on this study, we established the general character of the terrain and established where terrain corrections were necessary. The distortion introduced by topography was computed for each site using homogenous and heterogeneous models with actual topographic variations. Period-dependent, galvanic and inductive distortions were observed at different sites. We further applied terrain corrections to the real data recorded from the GHC. The corrected data were inverted, and the inverted model was compared with the corresponding inverted model obtained with uncorrected data. The modification in electrical resistivity features in the model obtained from the terrain-corrected response suggests the necessity of terrain correction in MT data recorded from the Himalayan region.


2021 ◽  
Author(s):  
Brian O'Meara ◽  
Jeremy M. Beaulieu

Models have long been used for understanding changing diversification patterns over time. The rediscovery that models with very different rates through time can fit a phylogeny equally well has led to great concern about the use of these models. We share and add to these concerns: even with time heterogeneous models without these issues, the distribution of the data means that estimates will be very uncertain. However, we argue that congruence issues such as this also occur in models as basic as Brownian motion and coin flipping. Taxon-heterogeneous models such as many SSE models appear not to have this particular issue.


2021 ◽  
Author(s):  
Jinfeng Liu ◽  
Jianwei Dong ◽  
Xuwen Jing ◽  
Xuwu Cao ◽  
Chenxiao Du ◽  
...  

Abstract In the process design and reuse of marine component products, there are a lot of heterogeneous models, causing the problem that the process knowledge and process design experience contained in them are difficult to express and reuse. Therefore, a process knowledge representation model for ship heterogeneous model is proposed in this paper. Firstly, the multi-element process knowledge graph is constructed, and the heterogeneous ship model is described in a unified way. Then, the multi-strategy ontology mapping method is applied, and the semantic expression between the process knowledge graph and the entity model is realized. Finally, by obtaining implicit semantics based on case-based reasoning and checking the similarity of the matching results, the case knowledge reuse is achieved, to achieve rapid design of the process. This method provides reliable technical support for the design of ship component assembly and welding process, greatly shortens the design cycle, and improves the working efficiency. In addition, a case study of the test model is carried out to verify the feasibility and efficiency of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shirui Zhang ◽  
Shili Qiu ◽  
Ping Li ◽  
Yongyuan Kou ◽  
Pengfei Kou

Amygdaloidal basalt, as a heterogeneous rock, is widely exposed at Baihetan hydropower station, China. The geometric effect of amygdales needs further studies and quantifying the shape, orientation, and statistical distribution of amygdales plays an important role in the laboratory and numerical experiments. Therefore, digital image processing (DIP) was first utilized to build a heterogeneous model (HM) to calibrate against the laboratory test results. Then, the heterogeneous models (HMs) with prescribed geometric features were generated by the inverse Monte-Carlo (IMC) algorithm. The uniaxial compression experiments based on HMs were conducted to study the mechanism of the crack initiation and propagation in the amygdaloidal basalt. The tensile fractures were mainly occurred in the matrix, and the shear fractures were mainly occurred in the amygdales. With the increase in the elliptic coefficient of amygdales, the uniaxial compressive strength (UCS) showed a linear growth trend. With the increase in the orientation of amygdales, the UCS exhibited a “V-shaped” distribution characteristic. This paper provides a numerical method for studying the mechanical properties of rocks with flaws.


Author(s):  
David Golightly ◽  
Ken Pierce ◽  
Roberto Palacin ◽  
Carl Gamble

Simulation is an important tool to support rail decarbonisation but can be challenging due to heterogeneous models, simulation tools and skill sets, and concerns around intellectual property. Multi-modelling, a proven methodology in sectors such as aerospace and automotive, uses Functional Mock-up Interface (FMI) and co-simulation to potentially overcome these problems. This paper presents a feasibility study of multi-modelling for rail decarbonisation, using a combination of audit of current state of the art, technical implementation and stakeholder consultation. The audit showed that while current uptake of FMI in rail is low, there is potential to repurpose models from pre-existing tools and apply them within multi-modelling. The technical feasibility assessment demonstrated how multi-modelling could generate flexible simulation outputs to identify decarbonisation systems effects both for urban and mainline rail, including rapid integration of pre-existing MATLAB Simulink models. Work with industry stakeholders identified use cases where multi-modelling would benefit rail decarbonisation, as well as barriers and enablers to adoption. Overall, the study demonstrates the feasibility and considerations for multi-modelling to support rail decarbonisation efforts, and the future developments necessary for wider rollout.


2021 ◽  
Author(s):  
Tauana Junqueira Cunha ◽  
James Davis Reimer ◽  
Gonzalo Giribet

Abstract Phylogenetic analyses may suffer from multiple sources of error leading to conflict between genes and methods of inference. The evolutionary history of the mollusc clade Vetigastropoda makes them susceptible to these conflicts, their higher level phylogeny remaining largely unresolved. Originating over 350 million years ago, vetigastropods were the dominant marine snails in the Paleozoic. Multiple extinction events and new radiations have resulted in both very long and very short branches and a large extant diversity of over 4000 species. This is the perfect setting of a hard phylogenetic question in which sources of conflict can be explored. We present 41 new transcriptomes across the diversity of vetigastropods (62 terminals total), and provide the first genomic-scale phylogeny for the group. We find that deep divergences differ from previous studies in which long branch attraction was likely pervasive. Robust results leading to changes in taxonomy include the paraphyly of the order Lepetellida and the family Tegulidae. Tectinae subfam. nov. is designated for the clade comprising Tectus, Cittarium and Rochia. For two early divergences, topologies disagreed between concatenated analyses using site heterogeneous models vs. concatenated partitioned analyses and summary coalescent methods. We investigated rate and composition heterogeneity among genes, as well as missing data by locus and by taxon, none of which had an impact on the inferred topologies. We also found no evidence for ancient introgression throughout the phylogeny. We further tested whether uninformative genes and over-partitioning were responsible for this discordance by evaluating the phylogenetic signal of individual genes using likelihood mapping, and by analyzing the most informative genes with a full multispecies coalescent model. We find that most genes are not informative at the two conflicting nodes, but neither this nor gene-wise partitioning are the cause of discordant results. New method implementations that simultaneously integrate amino acid profile mixture models and the multispecies coalescent might be necessary to resolve these and other recalcitrant nodes in the Tree of Life.


2021 ◽  
Vol 18 (182) ◽  
Author(s):  
Karim Kadry ◽  
Max L. Olender ◽  
David Marlevi ◽  
Elazer R. Edelman ◽  
Farhad R. Nezami

The pathophysiology of atherosclerotic lesions, including plaque rupture triggered by mechanical failure of the vessel wall, depends directly on the plaque morphology-modulated mechanical response. The complex interplay between lesion morphology and structural behaviour can be studied with high-fidelity computational modelling. However, construction of three-dimensional (3D) and heterogeneous models is challenging, with most previous work focusing on two-dimensional geometries or on single-material lesion compositions. Addressing these limitations, we here present a semi-automatic computational platform, leveraging clinical optical coherence tomography images to effectively reconstruct a 3D patient-specific multi-material model of atherosclerotic plaques, for which the mechanical response is obtained by structural finite-element simulations. To demonstrate the importance of including multi-material plaque components when recovering the mechanical response, a computational case study was conducted in which systematic variation of the intraplaque lipid and calcium was performed. The study demonstrated that the inclusion of various tissue components greatly affected the lesion mechanical response, illustrating the importance of multi-material formulations. This platform accordingly provides a viable foundation for studying how plaque micro-morphology affects plaque mechanical response, allowing for patient-specific assessments and extension into clinically relevant patient cohorts.


Sign in / Sign up

Export Citation Format

Share Document