scholarly journals Elevated temperature performance of reinforced concrete beams containing waste polypropylene fibers

2020 ◽  
Vol 21 ◽  
pp. 100705
Author(s):  
Zainab M.R. Abdul Rasoul ◽  
Mushtaq Sadiq Radhi ◽  
Aymen J. Alsaad ◽  
Haider Muhannad
Author(s):  
Amr H. Badawy ◽  
Ahmed Hassan ◽  
Hala El-Kady ◽  
L.M. Abd-El Hafez

The behavior of unbounded post tension and reinforced concrete beams under elevated temperature was presented. The experimental work was consisted of two major phases. In the first phase, the objective was studying the mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams respectively were studied. In the second phase, the residual mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams under elevated 400oC, for 120 minutes durations. The failure mechanisms, ultimate load capacity, and deflection at critical sections were monitored. The numerical prediction of the flexural behavior of the tested specimens is presented in this paper. This includes a comparison between the numerical and experimental test results according to ANSYS models. The results indicate that the prestressed beam with steel addition and reinforced concrete beams had higher resistance to beams under elevated 400oC than that of prestressed concrete beam in terms of ultimate capacity. It is also shown that the reinforced concrete beams have higher resistance to beams under elevated temperature than that of prestressed beam, prestressed beam with steel addition.


2014 ◽  
Vol 58 ◽  
pp. 166-174 ◽  
Author(s):  
Joško Ožbolt ◽  
Josipa Bošnjak ◽  
Goran Periškić ◽  
Akanshu Sharma

2012 ◽  
Vol 256-259 ◽  
pp. 938-941
Author(s):  
Kasinathan Rajkumar ◽  
A.M. Vasumathi

In this paper, an attempt to overcome the problem of brittleness of concrete, by adding polypropylene fibers to the concrete is made. The performance of the polypropylene fiber reinforced concrete will be investigated experimentall under two point middle third of monotonic load for various types of polypropylene fibers and FRP Wrapping.


2019 ◽  
Vol 194 ◽  
pp. 420-430 ◽  
Author(s):  
Ahmed Hassan ◽  
Faisal Aldhafairi ◽  
L.M. Abd-EL-Hafez ◽  
A.E.Y. Abouelezz

Author(s):  
Xin Yang ◽  
Ninghui Liang ◽  
Yang Hu ◽  
Rui Feng

AbstractTo study the influence of polypropylene fibers with different thicknesses on concrete beams, inclined section shear tests of polypropylene fiber concrete beams were carried out. The cracking load, ultimate load, midspan deflection, reinforcement, and strain of polypropylene fiber concrete beams and conventional reinforced-concrete beams under shear were compared and analyzed. The load-bearing capacity of the rectangular beams was improved significantly by polypropylene fiber addition. Compared with conventional reinforced-concrete beams, the limit shear load of concrete beams with polypropylene fibers and multisize polypropylene concrete beams that were reinforced with three types of fibers increased by 8.67% and 17.07%, respectively. By mixing polypropylene fibers into concrete beams, the initial crack shear force of the beam was improved, the number of cracks was increased and the crack width was reduced, which can increase the beam ductility, inhibit crack formation and increase the strength. The computational formula of the shear ultimate bearing capacity of polypropylene fiber–concrete beams was revised according to composite material theory, and the calculated results were consistent with the test values.


Sign in / Sign up

Export Citation Format

Share Document