scholarly journals Heat transfer rate of swirling impinging jets issuing from a twisted tetra-lobed nozzle

2020 ◽  
Vol 22 ◽  
pp. 100780
Author(s):  
Khwanchit Wongcharee ◽  
Kengkla Kunnarak ◽  
Varesa Chuwattanakul ◽  
Smith Eiamsa-ard
Author(s):  
Toshihiko Shakouchi ◽  
Takumi Maruyama ◽  
Toshitake Ando ◽  
Koichi Tsujimoto ◽  
Atsushi Watanabe

Various kinds of impinging jets are used widely in many industry fields, such as the cooling of a heated plate or electronic components, drying of textiles, film, and paper because of their high heat and mass transfer rates at and near the stagnation point. Many studies on impinging jets from circular and orifice nozzles have been made [1]–[6]. It is well known that as nozzle-plate spacing decreases considerably the heat transfer rate becomes much larger, for example the maximum heat transfer rate of a circular impinging air jet with a low nozzle-plate spacing h/d = 0.1 (d: nozzle exit diameter) and Reynolds number Re = umd/ν = 2.3 × 104 is about 2.17 times of that for h/d = 0.2, but at the same time the flow resistance or operating power of the nozzle-plate system increases considerably. In order to improve or enhance the heat transfer rate, it is needed to increase the impinging mean and fluctuating velocities without increasing the operating power. To achieve this object it is considered to use a resonance jet. In this paper, the flow, acoustic and heat transfer characteristics of resonance free, impinging and wall jets are made clear experimentally. Moreover, flow visualization of the water jet flow by a tracer method is also made to examine the vortex structure at the shear layer and inside the resonance room. As a result, the heat transfer rate of the impinging jet by a resonance nozzle can be improved and enhanced considerably.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Tim Persoons ◽  
Kuanysh Balgazin ◽  
Karl Brown ◽  
Darina B. Murray

Impinging jets are widely used to achieve a high local convective heat flux, with applications in high power density electronics and various other industrial fields. The heat transfer to steady impinging jets has been extensively researched, yet the understanding of pulsating impinging jets remains incomplete. Although some studies have shown a significant enhancement compared to steady jets, others have shown reductions in heat transfer rate, without consensus on the heat transfer mechanisms that determine this behavior. This study investigates the local convective heat transfer to a pulsating air jet from a long straight circular pipe nozzle impinging onto a smooth planar surface (nozzle-to-surface spacing 1 ≤ H/D ≤ 6, Reynolds numbers 6000 ≤ Re ≤ 14,000, pulsation frequency 9 Hz ≤ f ≤ 55Hz, Strouhal number 0.007 ≤ Sr = fD/Um ≤ 0.1). A different behavior is observed for the heat transfer enhancement in (i) the stagnation zone, (ii) the wall jet region and overall area average. Two different modified Strouhal numbers have been identified to scale the heat transfer enhancement in both regions: (i) Sr(H/D) and (ii) SrRe0.5. The average heat transfer rate increases by up to 75–85% for SrRe0.5 ≅ 8 (Sr = 0.1, Re = 6000), independent of nozzle-to-surface spacing. The stagnation heat transfer rate increases with nozzle-to-surface distance H/D. For H/D = 1 and low pulsation frequency (Sr < 0.025), a reduction in stagnation point heat transfer rate by 13% is observed, increasing to positive enhancements for Sr(H/D) > 0.1 up to a maximum enhancement of 48% at Sr(H/D) = 0.6.


Author(s):  
Manimegalai Kavarthalai ◽  
Vimala Ponnuswamy

A theoretical study of a squeezing ferro-nanofluid flow including thermal effects is carried out with application to bearings and articular cartilages. A representational geometry of the thin layer of a ferro-nanofluid squeezed between a flat rigid disk and a thin porous bed is considered. The flow behaviours and heat transfer in the fluid and porous regions are investigated. The mathematical problem is formulated based on the Neuringer–Rosensweig model for ferro-nanofluids in the fluid region including an external magnetic field, Darcy law for the porous region and Beavers–Joseph slip condition at the fluid–porous interface. The expressions for velocity, fluid film thickness, contact time, fluid flux, streamlines, pathlines, mean temperature and heat transfer rate in the fluid and porous regions are obtained by using a perturbation method. An asymptotic solution for the fluid layer thickness is also presented. The problem is also solved by a numerical method and the results by asymptotic analysis, perturbation and numerical methods are obtained assuming a constant force squeezing state and are compared. It is shown that the results obtained by all the methods agree well with each other. The effects of various parameters such as Darcy number, Beavers–Joseph constant and magnetization parameter on the flow behaviours, contact time, mean temperature and heat transfer rate are investigated. The novel results showing the impact of using ferro-nanofluids in the two applications under consideration are presented. The results under special cases are further compared with the existing results in the literature and are found to agree well.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3711
Author(s):  
Asifa ◽  
Talha Anwar ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Kanokwan Sitthithakerngkiet

In this modern era, nanofluids are considered one of the advanced kinds of heat transferring fluids due to their enhanced thermal features. The present study is conducted to investigate that how the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a permeable medium, and a uniform magnetic field and radiation flux are also involved in determining flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the flow phenomenon is examined for three different situations. To evaluate the influence of shape factor, MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical modeling is performed in the form of non-integer order operators, and a double fractional analysis is carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation, and Zakian’s algorithm is applied to approximate the Laplace inversion numerically. The solutions of flow and energy equations are presented in terms of graphical illustrations and tables to discuss important physical aspects of the observed problem. Moreover, a detailed inspection on shear stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it is perceived that velocity and energy functions of the nanofluid exhibit significant variations because of the different shapes of nanoparticles.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 595
Author(s):  
Mahir Faris Abdullah ◽  
Rozli Zulkifli ◽  
Hazim Moria ◽  
Asmaa Soheil Najm ◽  
Zambri Harun ◽  
...  

Impinging jets are considered to be a well-known technique that offers high local heat transfer rates. No correlation could be established in the literature between the significant parameters and the Nusselt number, and investigation of the interactions between the correlated factors has not been conducted before. An experimental analysis based on the twin impingement jet mechanism was achieved to study the heat transfer rate pertaining to the surface plate. In the current paper, four influential parameters were studied: the spacing between nozzles, velocity, concentration of Nano solution coating and nozzle-plate distance, which are considered to be effective parameters for the thermal conductivity and the heat transfer coefficient of TiO2 nanoparticle, an X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis were done, which highlighted the structure and showed that the nanosolution coated the surface homogenously. Moreover, a comparison was done for the experimental results with that of the predicted responses generated by the Design Expert software, Version 7 User’s Guide, USA. A response surface methodology (RSM) was employed to improve a mathematical model by accounting for a D-optimal design. In addition, the analysis of variance (ANOVA) was employed for testing the significance of the models. The maximum Nu of 91.47, where H = S = 1 cm; Reynolds number of 17,000, and TiO2 nanoparticle concentration of 0.5% M. The highest improvement rate in Nusselt was about 26%, achieved with TiO2 Nanoparticle, when S = 3 cm, H = 6 cm and TiO2 nanoparticle = 0.5 M. Furthermore, based on the statistical analysis, the expected values were found to be in satisfactory agreement with that of the empirical data, which was conducted by accounting for the proposed models’ excellent predictability. Multivariate approaches are very useful for researchers, as well as for applications in industrial processes, as they lead to increased efficiency and reduced costs, so the presented results of this work could encourage the overall uses of multivariate methods in these fields. Hypotheses: A comparison was done for the predicted responses generated by the Design Expert software with the experimental results and then studied to verify the following hypotheses: ► Preparation of three concentrations of TiO2 nanosolution was done and studied. ► The heat transfer rate could be increased by surface coating with TiO2 nanoparticle. ► The heat transfer could be improved by the impingement jet technique with suitable adjustments.


Sign in / Sign up

Export Citation Format

Share Document