Computing cross-isotherm volume transports from ocean temperature observations and surface heat fluxes, with application to the Barents Sea inflow

2010 ◽  
Vol 30 (17) ◽  
pp. 1830-1839 ◽  
Author(s):  
Ole Henrik Segtnan ◽  
Tore Furevik ◽  
Alastair D. Jenkins
2019 ◽  
Vol 32 (20) ◽  
pp. 7017-7035 ◽  
Author(s):  
Mitchell Bushuk ◽  
Xiaosong Yang ◽  
Michael Winton ◽  
Rym Msadek ◽  
Matthew Harrison ◽  
...  

ABSTRACT Dynamical prediction systems have shown potential to meet the emerging need for seasonal forecasts of regional Arctic sea ice. Observationally constrained initial conditions are a key source of skill for these predictions, but the direct influence of different observation types on prediction skill has not yet been systematically investigated. In this work, we perform a hierarchy of observing system experiments with a coupled global data assimilation and prediction system to assess the value of different classes of oceanic and atmospheric observations for seasonal sea ice predictions in the Barents Sea. We find notable skill improvements due to the inclusion of both sea surface temperature (SST) satellite observations and subsurface conductivity–temperature–depth (CTD) measurements. The SST data are found to provide the crucial source of interannual variability, whereas the CTD data primarily provide climatological and trend improvements. Analysis of the Barents Sea ocean heat budget suggests that ocean heat content anomalies in this region are driven by surface heat fluxes on seasonal time scales.


2017 ◽  
Vol 37 (14) ◽  
pp. 4757-4767 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Zhongbo Su

2021 ◽  
Vol 149 (5) ◽  
pp. 1517-1534
Author(s):  
Benjamin Jaimes de la Cruz ◽  
Lynn K. Shay ◽  
Joshua B. Wadler ◽  
Johna E. Rudzin

AbstractSea-to-air heat fluxes are the energy source for tropical cyclone (TC) development and maintenance. In the bulk aerodynamic formulas, these fluxes are a function of surface wind speed U10 and air–sea temperature and moisture disequilibrium (ΔT and Δq, respectively). Although many studies have explained TC intensification through the mutual dependence between increasing U10 and increasing sea-to-air heat fluxes, recent studies have found that TC intensification can occur through deep convective vortex structures that obtain their local buoyancy from sea-to-air moisture fluxes, even under conditions of relatively low wind. Herein, a new perspective on the bulk aerodynamic formulas is introduced to evaluate the relative contribution of wind-driven (U10) and thermodynamically driven (ΔT and Δq) ocean heat uptake. Previously unnoticed salient properties of these formulas, reported here, are as follows: 1) these functions are hyperbolic and 2) increasing Δq is an efficient mechanism for enhancing the fluxes. This new perspective was used to investigate surface heat fluxes in six TCs during phases of steady-state intensity (SS), slow intensification (SI), and rapid intensification (RI). A capping of wind-driven heat uptake was found during periods of SS, SI, and RI. Compensation by larger values of Δq > 5 g kg−1 at moderate values of U10 led to intense inner-core moisture fluxes of greater than 600 W m−2 during RI. Peak values in Δq preferentially occurred over oceanic regimes with higher sea surface temperature (SST) and upper-ocean heat content. Thus, increasing SST and Δq is a very effective way to increase surface heat fluxes—this can easily be achieved as a TC moves over deeper warm oceanic regimes.


2010 ◽  
Vol 24 (4) ◽  
pp. 845-849 ◽  
Author(s):  
M. Ajith ◽  
Ranjan Das ◽  
Ramgopal Uppaluri ◽  
Subhash C. Mishra

Sign in / Sign up

Export Citation Format

Share Document