scholarly journals Self-Generated Whisker Movements Drive State-Dependent Sensory Input to Developing Barrel Cortex

2020 ◽  
Vol 30 (12) ◽  
pp. 2404-2410.e4 ◽  
Author(s):  
James C. Dooley ◽  
Ryan M. Glanz ◽  
Greta Sokoloff ◽  
Mark S. Blumberg
2020 ◽  
Author(s):  
James C. Dooley ◽  
Ryan M. Glanz ◽  
Greta Sokoloff ◽  
Mark S. Blumberg

SummaryCortical development is an activity-dependent process [1–3]. Regarding the role of activity in developing somatosensory cortex, one persistent debate concerns the importance of sensory feedback from self-generated movements. Specifically, recent studies claim that cortical activity is generated intrinsically, independent of movement [3, 4]. However, other studies claim that behavioral state moderates the relationship between movement and cortical activity [5–7]. Thus, perhaps inattention to behavioral state leads to failures to detect movement-driven activity [8]. Here, we resolve this issue by associating local field activity (i.e., spindle bursts) and unit activity in the barrel cortex of 5-day-old rats with whisker movements during wake and myoclonic twitches of the whiskers during active (REM) sleep. Barrel activity increased significantly within 500 ms of whisker movements, especially after twitches. Also, higher-amplitude movements were more likely to trigger barrel activity; when we controlled for movement amplitude, barrel activity was again greater after a twitch than a wake movement. We then inverted the analysis to assess the likelihood that increases in barrel activity were preceded within 500 ms by whisker movements: At least 55% of barrel activity was attributable to sensory feedback from whisker movements. Finally, when periods with and without movement were compared, 70–75% of barrel activity was movement-related. These results confirm the importance of sensory feedback from movements in driving activity in sensorimotor cortex and underscore the necessity of monitoring sleep-wake states to ensure accurate assessments of the contributions of the sensory periphery to activity in developing somatosensory cortex.


2021 ◽  
Author(s):  
Simeng Gu ◽  
Wei Wang ◽  
Kuan Zhang ◽  
Rou Feng ◽  
Naling Li ◽  
...  

Abstract Different effects of astrocyte during sleep and awake have been extensively studied, especially for metabolic clearance by the glymphatic system, which works during sleep and stops working during waking states. However, how astrocytes contribute to modulation of sensory transmission during sleep and awake animals remain largely unknown. Recent advances in genetically encoded Ca2+ indicators have provided a wealth of information on astrocytic Ca2+, especially in their fine perisynaptic processes, where astrocytic Ca2+ most likely affects the synaptic function. Here we use two-photon microscopy to image astrocytic Ca2+ signaling in freely moving mice trained to run on a wheel in combination with in vivo whole-cell recordings to evaluate the role of astrocytic Ca2+ signaling in different behavior states. We found that there are two kinds of astrocytic Ca2+ signaling: a small long-lasting Ca2+ increase during sleep state and a sharp widespread but short-long-lasting Ca2+ spike when the animal was awake (fluorescence increases were 23.2 ± 14.4% for whisker stimulation at sleep state, compared with 73.3 ± 11.7% for at awake state, paired t-test, p < 0.01). The small Ca2+ transients decreased extracellular K+, hyperpolarized the neurons, and suppressed sensory transmission; while the large Ca2+ wave enhanced sensory input, contributing to reliable sensory transmission in aroused states. Locus coeruleus activation works as a switch between these two kinds of astrocytic Ca2+ elevation. Thus, we show that cortical astrocytes play an important role in processing of sensory input. These two types of events appear to have different pharmacological sources and may play a different role in facilitating the efficacy of sensory transmission.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112927 ◽  
Author(s):  
Keita Tokuda ◽  
Michimasa Nishikawa ◽  
Shigenori Kawahara

2016 ◽  
Vol 36 (38) ◽  
pp. 9922-9932 ◽  
Author(s):  
D. Akhmetshina ◽  
A. Nasretdinov ◽  
A. Zakharov ◽  
G. Valeeva ◽  
R. Khazipov

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Aurélie Pala ◽  
Carl CH Petersen

The cellular and synaptic mechanisms driving cell-type-specific function during various cortical network activities and behaviors are poorly understood. Here, we targeted whole-cell recordings to two classes of inhibitory GABAergic neurons in layer 2/3 of the barrel cortex of awake head-restrained mice and correlated spontaneous membrane potential dynamics with cortical state and whisking behavior. Using optogenetic stimulation of single layer 2/3 excitatory neurons we measured unitary excitatory postsynaptic potentials (uEPSPs) across states. During active states, characterized by whisking and reduced low-frequency activity in the local field potential, parvalbumin-expressing neurons depolarized and, albeit in a small number of recordings, received uEPSPs with increased amplitude. In contrast, somatostatin-expressing neurons hyperpolarized and reduced firing rates during active states without consistent change in uEPSP amplitude. These results further our understanding of neocortical inhibitory neuron function in awake mice and are consistent with the hypothesis that distinct genetically-defined cell classes have different state-dependent patterns of activity.


2021 ◽  
Author(s):  
Suryadeep Dash ◽  
Dawn M Autio ◽  
Shane R Crandall

Layer 6 corticothalamic (L6 CT) neurons are in a strategic position to control sensory input to the neocortex, yet we understand very little about their functions. Apart from studying their anatomical, physiological and synaptic properties, most recent efforts have focused on the activity-dependent influences CT cells can exert on thalamic and cortical neurons through causal optogenetic manipulations. However, few studies have attempted to study them during behavior. In an attempt to address this gap, we performed juxtacellular recordings from optogenetically identified CT neurons in whisker-related primary somatosensory cortex (wS1) of awake, head-fixed mice (of either sex) free to rest quietly or self-initiate bouts of whisking and locomotion. We found a rich diversity of response profiles exhibited by CT cells. Broadly, their spiking patterns were either modulated by whisker-related behavior (~28%) or not (~72%). Whisker-related neurons exhibited both increases as well as decreases in firing rates. We also encountered cells with preceding modulations in firing rate before whisking onset. Overall, whisking better explained these changes in rates than overall changes in arousal. The CT cells that showed no whisker-related activity had low spontaneous firing rates (<0.5 Hz), with many all but silent. Remarkably, this relatively silent population preferentially spiked at the state transition point when pupil diameter constricted and the mouse entered quiet wakefulness. Thus, our results demonstrate that L6 CT neurons in wS1 show diverse spiking patterns, perhaps subserving distinct functional roles related to precisely timed responses during complex behaviors and transitions between discrete waking states.


2018 ◽  
Vol 55 (6) ◽  
pp. 916-933 ◽  
Author(s):  
Elizabeth C. Webb ◽  
Suzanne B. Shu

The authors examine how perceived similarity between sequential risks affects individuals’ risk-taking intentions. Specifically, in six studies, the authors find that, in sequential choice settings, individuals exhibit significant positive state dependence in risk-taking preferences, such that they are more likely to take a risk when it is similar to a previously taken risk than when it is dissimilar. For example, if an individual has previously taken a health/safety risk, that individual is more likely to take a second health/safety risk than a second risk that is in the financial domain. The authors show that because similarity between risks is malleable and can be determined by situational and contextual variables, subsequent risk-taking intentions can be changed in a predictable manner when similarity is manipulated through framing. The authors establish that increased feelings of self-efficacy and self-signaling through the prior risk-taking experience drive state-dependent risk-taking preferences. The authors further show that the effect of similarity on preferences is not moderated by the outcome received in the prior risk and holds when controlling for individual-level and domain-specific heterogeneity. Taken together, the results demonstrate that the similarity structures that exist between risks have a significant effect on risk-taking preferences in dynamic choice settings.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Mohamed Khateb ◽  
Jackie Schiller ◽  
Yitzhak Schiller

The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independently passively stimulated principal vibrissae. Optogenetic activation of vM1 supra-linearly amplified the response of vS1 neurons to passive vibrissa stimulation in all cortical layers measured. Maximal amplification occurred when onset of vM1 optogenetic activation preceded vibrissa stimulation by 20 ms. In addition to amplification, vM1 activation also sharpened angular tuning of vS1 neurons in all cortical layers measured. Our findings indicated that in addition to output motor signals, vM1 also sends preparatory signals to vS1 that serve to amplify and sharpen the response of neurons in the barrel cortex to incoming sensory input signals.


Sign in / Sign up

Export Citation Format

Share Document