scholarly journals State-dependent cell-type-specific membrane potential dynamics and unitary synaptic inputs in awake mice

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Aurélie Pala ◽  
Carl CH Petersen

The cellular and synaptic mechanisms driving cell-type-specific function during various cortical network activities and behaviors are poorly understood. Here, we targeted whole-cell recordings to two classes of inhibitory GABAergic neurons in layer 2/3 of the barrel cortex of awake head-restrained mice and correlated spontaneous membrane potential dynamics with cortical state and whisking behavior. Using optogenetic stimulation of single layer 2/3 excitatory neurons we measured unitary excitatory postsynaptic potentials (uEPSPs) across states. During active states, characterized by whisking and reduced low-frequency activity in the local field potential, parvalbumin-expressing neurons depolarized and, albeit in a small number of recordings, received uEPSPs with increased amplitude. In contrast, somatostatin-expressing neurons hyperpolarized and reduced firing rates during active states without consistent change in uEPSP amplitude. These results further our understanding of neocortical inhibitory neuron function in awake mice and are consistent with the hypothesis that distinct genetically-defined cell classes have different state-dependent patterns of activity.

2007 ◽  
Vol 97 (6) ◽  
pp. 4380-4385 ◽  
Author(s):  
Soo-Hyun Lee ◽  
Peter W. Land ◽  
Daniel J. Simons

Tactile deprivation in rats produced by whisker-trimming early in life leads to abnormally robust responses of excitatory neurons in layer 4 of primary somatosensory cortex when the re-grown whiskers are stimulated. Present findings from fast-spike neurons indicate that presumed inhibitory cells fire less robustly under the same conditions. These contrasting effects may reflect altered patterns of thalamocortical input to excitatory versus inhibitory cells and/or changes in the strength of intracortical connections. Despite increased excitability of layer 4, neurons in layer 2/3 respond at control levels even after full whisker re-growth. Layer 4 synapses onto supragranular neurons may be permanently depressed as a result of neonatal sensory deprivation.


2021 ◽  
Vol 101 (1) ◽  
pp. 353-415
Author(s):  
Jochen F. Staiger ◽  
Carl C. H. Petersen

The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a ‘barrel’ (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.


2019 ◽  
Author(s):  
Ali Karimi ◽  
Jan Odenthal ◽  
Florian Drawitsch ◽  
Kevin M. Boergens ◽  
Moritz Helmstaedter

ABSTRACTWe investigated the synaptic innervation of apical tufts of cortical pyramidal cells in a region between layers 1 and 2 using 3-D electron microscopy (3D-EM) applied to four cortical regions in mouse. Across all cortices, we found the relative inhibitory input at the apical dendrite’s main bifurcation to be more than 3-fold stronger for layer 2 pyramidal cells than for all other pyramidal cells. Towards the distal tuft dendrites in upper layer 1, however, the relative inhibitory input was about 2-fold stronger for L5 pyramidal cells than for all others. Only L3 pyramidal cells showed homogeneous inhibitory input density. The inhibitory to excitatory synaptic balance is thus specific for the types of pyramidal cells. Inhibitory axons preferentially innervated either layer 2 or L3/5 apical dendrites, but not both. These findings describe connectomic principles for the control of pyramidal cells at their apical dendrites in the upper layers of the cerebral cortex and point to differential computational properties of layer 2, layer 3 and layer 5 pyramidal cells in cortex.


Function ◽  
2021 ◽  
Author(s):  
Tanya Sippy ◽  
Corryn Chaimowitz ◽  
Sylvain Crochet ◽  
Carl C H Petersen

Abstract The striatum integrates sensorimotor and motivational signals, likely playing a key role in reward-based learning of goal-directed behavior. However, cell type-specific mechanisms underlying reinforcement learning remain to be precisely determined. Here, we investigated changes in membrane potential dynamics of dorsolateral striatal neurons comparing naïve mice and expert mice trained to lick a reward spout in response to whisker deflection. We recorded from three distinct cell types: i) direct pathway striatonigral neurons, which express type 1 dopamine receptors; ii) indirect pathway striatopallidal neurons, which express type 2 dopamine receptors; and iii) tonically active, putative cholinergic, striatal neurons. Task learning was accompanied by cell type-specific changes in the membrane potential dynamics evoked by the whisker deflection and licking in successfully-performed trials. Both striatonigral and striatopallidal types of striatal projection neurons showed enhanced task-related depolarization across learning. Striatonigral neurons showed a prominent increase in a short latency sensory-evoked depolarization in expert compared to naïve mice. In contrast, the putative cholinergic striatal neurons developed a hyperpolarizing response across learning, driving a pause in their firing. Our results reveal cell type-specific changes in striatal membrane potential dynamics across the learning of a simple goal-directed sensorimotor transformation, helpful for furthering the understanding of the various potential roles of different basal ganglia circuits.


2021 ◽  
Author(s):  
Danqing Yang ◽  
Guanxiao Qi ◽  
Dirk Feldmeyer

Neocortical layer 6 plays a crucial role in sensorimotor coordination and integration through functionally segregated circuits linking intracortical and subcortical areas. However, because of the high neuronal heterogeneity and sparse intralaminar connectivity data on the cell-type specific synaptic microcircuits in layer 6 remain few and far between. To address this issue, whole-cell recordings combined with morphological reconstructions have been used to identify morphoelectric types of layer 6A pyramidal cells (PCs) in rat barrel cortex. Cortico-thalamic (CT), corticocortical (CC) and cortico-claustral (CCla) pyramidal cells have been distinguished based on to their distinct dendritic and axonal morphologies as well as their different electrophysiological properties. Here we demonstrate that these three types of layer 6A pyramidal cells innervate neighboring excitatory neurons with distinct synaptic properties: CT PCs establish weak facilitating synapses to other L6A PCs; CC PCs form synapses of moderate efficacy; while synapses made by putative CCla PCs display the highest release probability and a marked short-term depression. Furthermore, for excitatory-inhibitory synaptic connections in layer 6 we were able to show that both the presynaptic PC type and the postsynaptic interneuron type govern the dynamic properties of the of the respective synaptic connections. We have identified a functional division of local layer 6A excitatory microcircuits which may be responsible of the differential temporal engagement of layer 6 feed-forward and feedback networks. Our results provides a basis for further investigations on the long-range cortico-cortical, cortico-thalamic and cortico-claustral pathways.


Sign in / Sign up

Export Citation Format

Share Document