Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells

2016 ◽  
Vol 32 (8) ◽  
pp. 1019-1025 ◽  
Author(s):  
Vinicius Rosa ◽  
Han Xie ◽  
Nileshkumar Dubey ◽  
Thulasi T. Madanagopal ◽  
Sneha S. Rajan ◽  
...  
Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 620 ◽  
Author(s):  
Jae Hwa Ahn ◽  
In-Ryoung Kim ◽  
Yeon Kim ◽  
Dong-Hyun Kim ◽  
Soo-Byung Park ◽  
...  

The purpose of this study was to investigate the effects of mesoporous bioactive glass nanoparticle (MBN)/graphene oxide (GO) composites on the mineralization ability and differentiation potential of human dental pulp stem cells (hDPSCs). MBN/GO composites were synthesized using the sol-gel method and colloidal processing to enhance the bioactivity and mechanical properties of MBN. Characterization using FESEM, XRD, FTIR, and Raman spectrometry showed that the composites were successfully synthesized. hDPSCs were then cultured directly on the MBN/GO (40:1 and 20:1) composites in vitro. MBN/GO promoted the proliferation and alkaline phosphatase (ALP) activity of hDPSCs. In addition, qRT-PCR showed that MBN/GO regulated the mRNA levels of odontogenic markers (dentin sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP-1), ALP, matrix extracellular phosphoglycoprotein (MEPE), bone morphogenetic protein 2 (BMP-2), and runt-related transcription factor 2 (RUNX-2)). The mRNA levels of DSPP and DMP-1, two odontogenesis-specific markers, were considerably upregulated in hDPSCs in response to growth on the MBN/GO composites. Western blot analysis revealed similar results. Alizarin red S staining was subsequently performed to further investigate MBN/GO-induced mineralization of hDPSCs. It was revealed that MBN/GO composites promote odontogenic differentiation via the Wnt/β-catenin signaling pathway. Collectively, the results of the present study suggest that MBN/GO composites may promote the differentiation of hDPSCs into odontoblast-like cells, and potentially induce dentin formation.


2019 ◽  
Vol 47 (1) ◽  
pp. 115-122
Author(s):  
Xincong Li ◽  
Haowei Guo ◽  
Shuangshuang Ren ◽  
Ruirui Fan ◽  
Yijun Yu ◽  
...  

2018 ◽  
Vol 93 ◽  
pp. 74-79 ◽  
Author(s):  
Maziar Ebrahimi Dastgurdi ◽  
Fatemeh Ejeian ◽  
Marzie Nematollahi ◽  
Ahmad Motaghi ◽  
Mohammad Hossein Nasr-Esfahani

Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 160 ◽  
Author(s):  
Shinichiro Yoshida ◽  
Atsushi Tomokiyo ◽  
Daigaku Hasegawa ◽  
Sayuri Hamano ◽  
Hideki Sugii ◽  
...  

Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yi-Jane Chen ◽  
Chung-Chen Yao ◽  
Chien-Hsun Huang ◽  
Hao-Hueng Chang ◽  
Tai-Horng Young

Glycans of cell surface glycoproteins are involved in the regulation of cell migration, growth, and differentiation. N-acetyl-glucosaminyltransferase V (GnT-V) transfers N-acetyl-d-glucosamine to formβ1,6-branched N-glycans, thus playing a crucial role in the biosynthesis of glycoproteins. This study reveals the distinct expression of GnT-V in STRO-1 and CD-146 double-positive dental pulp stem cells (DPSCs). Furthermore, we investigated three types of hexosamines and their N-acetyl derivatives for possible effects on the osteogenic differentiation potential of DPSCs. Our results showed that exogenous d-glucosamine (GlcN), N-acetyl-d-glucosamine (GlcNAc), d-mannosamine (ManN), and acetyl-d-mannosamine (ManNAc) promoted DPSCs’ early osteogenic differentiation in the absence of osteogenic supplements, but d-galactosamine (GalN) or N-acetyl-galactosamine (GalNAc) did not. Effects include the increased level of TGF-βreceptor type I, activation of TGF-βsignaling, and increased mRNA expression of osteogenic differentiation marker genes. The hexosamine-treated DPSCs showed an increased mineralized matrix deposition in the presence of osteogenic supplements. Moreover, the level of TGF-βreceptor type I and early osteogenic differentiation were abolished in the DPSCs transfected with siRNA for GnT-V knockdown. These results suggest that GnT-V plays a critical role in the hexosamine-induced activation of TGF-βsignaling and subsequent osteogenic differentiation of DPSCs.


Sign in / Sign up

Export Citation Format

Share Document