Model-based optimization and comparative analysis of open-loop and closed-loop RO-PRO desalination systems

Desalination ◽  
2018 ◽  
Vol 446 ◽  
pp. 83-93 ◽  
Author(s):  
Shenhan Wang ◽  
Qiping Zhu ◽  
Chang He ◽  
Bingjian Zhang ◽  
Qinglin Chen ◽  
...  
Author(s):  
Umesh Bhagat ◽  
Bijan Shirinzadeh ◽  
Yanling Tian

This paper presents an experimental study of laser interferometry-based closed-loop motion tracking for flexure-based four-bar micro/nano manipulator. To enhance the accuracy of micro/nano manipulation, laser interferometry-based motion tracking control is established with experimental facility. The authors present and discuss open-loop control, model-based closed-loop control, and robust motion tracking closed-loop control for flexure-based mechanism. A comparative error analysis for closed-loop control with capacitive position sensor and laser interferometry feedback is discussed and presented. Model-based closed-loop control shows improvement in position and motion tracking over open-loop control. Robust control demonstrates high precise and accurate motion tracking of flexure-based mechanism compared to the model-based control. With this experimental study, this paper offers evidence that the laser interferometry-based closed-loop control can minimize positioning and tracking errors during dynamic motion, hence realizing high precision motion tracking and accurate position control.


Author(s):  
Bijan Shirinzadeh ◽  
Umesh Bhagat ◽  
Yanling Tian

This paper presents an experimental study of laser interferometry-based closed-loop motion tracking for flexure-based four-bar micro/nano manipulator. To enhance the accuracy of micro/nano manipulation, laser interferometry-based motion tracking control is established with experimental facility. The authors present and discuss open-loop control, model-based closed-loop control, and robust motion tracking closed-loop control for flexure-based mechanism. A comparative error analysis for closed-loop control with capacitive position sensor and laser interferometry feedback is discussed and presented. Model-based closed-loop control shows improvement in position and motion tracking over open-loop control. Robust control demonstrates high precise and accurate motion tracking of flexure-based mechanism compared to the model-based control. With this experimental study, this paper offers evidence that the laser interferometry-based closed-loop control can minimize positioning and tracking errors during dynamic motion, hence realizing high precision motion tracking and accurate position control.


2020 ◽  
Vol 26 ◽  
pp. 41
Author(s):  
Tianxiao Wang

This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, these two systems are in general different from each other due to the conditional mean-field terms in the MF-SDE. Eventually, the comparisons with pre-committed optimal strategies, open-loop equilibrium strategies are given in details.


2020 ◽  
pp. 99-107
Author(s):  
Erdal Sehirli

This paper presents the comparison of LED driver topologies that include SEPIC, CUK and FLYBACK DC-DC converters. Both topologies are designed for 8W power and operated in discontinuous conduction mode (DCM) with 88 kHz switching frequency. Furthermore, inductors of SEPIC and CUK converters are wounded as coupled. Applications are realized by using SG3524 integrated circuit for open loop and PIC16F877 microcontroller for closed loop. Besides, ACS712 current sensor used to limit maximum LED current for closed loop applications. Finally, SEPIC, CUK and FLYBACK DC-DC LED drivers are compared with respect to LED current, LED voltage, input voltage and current. Also, advantages and disadvantages of all topologies are concluded.


1998 ◽  
Vol 37 (12) ◽  
pp. 335-342 ◽  
Author(s):  
Jacek Czeczot

This paper deals with the minimal-cost control of the modified activated sludge process with varying level of wastewater in the aerator tank. The model-based adaptive controller of the effluent substrate concentration, basing on the substrate consumption rate and manipulating the effluent flow rate outcoming from the aerator tank, is proposed and its performance is compared with conventional PI controller and open loop behavior. Since the substrate consumption rate is not measurable on-line, the estimation procedure on the basis of the least-square method is suggested. Finally, it is proved that cooperation of the DO concentration controller with the adaptive controller of the effluent substrate concentration allows the process to be operated at minimum costs (low consumption of aeration energy).


2021 ◽  
Vol 13 (15) ◽  
pp. 2868
Author(s):  
Yonglin Tian ◽  
Xiao Wang ◽  
Yu Shen ◽  
Zhongzheng Guo ◽  
Zilei Wang ◽  
...  

Three-dimensional information perception from point clouds is of vital importance for improving the ability of machines to understand the world, especially for autonomous driving and unmanned aerial vehicles. Data annotation for point clouds is one of the most challenging and costly tasks. In this paper, we propose a closed-loop and virtual–real interactive point cloud generation and model-upgrading framework called Parallel Point Clouds (PPCs). To our best knowledge, this is the first time that the training model has been changed from an open-loop to a closed-loop mechanism. The feedback from the evaluation results is used to update the training dataset, benefiting from the flexibility of artificial scenes. Under the framework, a point-based LiDAR simulation model is proposed, which greatly simplifies the scanning operation. Besides, a group-based placing method is put forward to integrate hybrid point clouds, via locating candidate positions for virtual objects in real scenes. Taking advantage of the CAD models and mobile LiDAR devices, two hybrid point cloud datasets, i.e., ShapeKITTI and MobilePointClouds, are built for 3D detection tasks. With almost zero labor cost on data annotation for newly added objects, the models (PointPillars) trained with ShapeKITTI and MobilePointClouds achieved 78.6% and 60.0% of the average precision of the model trained with real data on 3D detection, respectively.


Sign in / Sign up

Export Citation Format

Share Document