Comparison of Dc-Dc SEPIC, CUK and Flyback Converters Based LED Drivers

2020 ◽  
pp. 99-107
Author(s):  
Erdal Sehirli

This paper presents the comparison of LED driver topologies that include SEPIC, CUK and FLYBACK DC-DC converters. Both topologies are designed for 8W power and operated in discontinuous conduction mode (DCM) with 88 kHz switching frequency. Furthermore, inductors of SEPIC and CUK converters are wounded as coupled. Applications are realized by using SG3524 integrated circuit for open loop and PIC16F877 microcontroller for closed loop. Besides, ACS712 current sensor used to limit maximum LED current for closed loop applications. Finally, SEPIC, CUK and FLYBACK DC-DC LED drivers are compared with respect to LED current, LED voltage, input voltage and current. Also, advantages and disadvantages of all topologies are concluded.

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Mei Yu Soh ◽  
S. Lawrence Selvaraj ◽  
Lulu Peng ◽  
Kiat Seng Yeo

LEDs are highly energy efficient and have substantially longer lifetimes compared to other existing lighting technologies. In order to facilitate the new generation of LED devices, approaches to improve power efficiency with increased integration level for lighting device should be analysed. This paper proposes a fully on-chip integrated LED driver design implemented using heterogeneous integration of gallium nitride (GaN) devices atop BCD circuits. The performance of the proposed design is then compared with the conventional fully on-board integration of power devices with the LED driver integrated circuit (IC). The experimental results confirm that the fully on-chip integrated LED driver achieves a consistently higher power efficiency value compared with the fully on-board design within the input voltage range of 4.5–5.5 V. The maximal percentage improvement in the efficiency of the on-chip solution compared with the on-board solution is 18%.


2021 ◽  
Vol 13 (19) ◽  
pp. 11059
Author(s):  
Shahrukh Khan ◽  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
...  

High gain DC-DC converters are getting popular due to the increased use of renewable energy sources (RESs). Common ground between the input and output, low voltage stress across power switches and high voltage gain at lower duty ratios are desirable features required in any high gain DC-DC converter. DC-DC converters are widely used in DC microgrids to supply power to meet local demands. In this work, a high step-up DC-DC converter is proposed based on the voltage lift (VL) technique using a single power switch. The proposed converter has a voltage gain greater than a traditional boost converter (TBC) and Traditional quadratic boost converter (TQBC). The effect of inductor parasitic resistances on the voltage gain of the converter is discussed. The losses occurring in various components are calculated using PLECS software. To confirm the performance of the converter, a hardware prototype of 200 W is developed in the laboratory. The simulation and hardware results are presented to determine the performance of the converter in both open-loop and closed-loop conditions. In closed-loop operation, a PI controller is used to maintain a constant output voltage when the load or input voltage is changed.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 4031-4034

Fly back converter is the most popular converter because of its simplicity, low part counts and isolation. It occupies less volume and it saves cost. Fly back converter steps up and step down the voltage with the same polarity. Open loop operation remains insensitive to the input voltage and load variations. Matlab Simulink model for Fly back converter is established using PI controller. Open loop Fly back converter system and closed loop fly back converter systems are simulated and their outcomes are compared. Comparison is done in terms of Rise time ,Settling time and steady state error


1995 ◽  
Vol 05 (04) ◽  
pp. 747-755 ◽  
Author(s):  
MARIAN K. KAZIMIERCZUK ◽  
ROBERT C. CRAVENS, II

An experimental verification of previously derived small-signal low-frequency open- and closed-loop characteristics and step responses of a voltage-mode-controlled pulse-width-modulated (PWM) boost DC–DC converter is presented. The Bode plots of the voltage transfer function of the control circuit, the converter and the PWM modulator, the open-loop control-to-output and input-to-output transfer functions, the loop gain, and the closed-loop control-to-output and input-to-output transfer functions are measured. The step responses to the changes in the input voltage, the duty cycle, and the reference voltage are measured. The theoretical results were in good agreement with the measured results. The small-signal model of the converter is experimentally verified.


Author(s):  
J E Mottershead ◽  
M Ghandchi Tehrani ◽  
S James ◽  
P Court

This article describes the practical application of a vibration control technique, developed by the authors and known as the receptance method, to the AgustaWestland W30 helicopter airframe in the vibration test house at Yeovil. The experimental work was carried out over a total of 5 days in two visits to the Yeovil site during February and March 2011. In the experiments, existing electro-hydraulic actuators were used; they were built into the airframe structure and originally designed for vibration suppression by the methodology known as active control of structural response developed at the AgustaWestland Helicopters site in Yeovil. Accelerometers were placed at a large number of points around the airframe and an initial open-loop modal test was carried out. In a subsequent test, at higher actuator input voltage, considerable non-linearity was discovered, to the extent that the ordering of certain modes had changed. The vibration modes were, in general, heavily damped. Control was implemented using measured frequency response functions obtained at the higher input level. After acquiring the necessary measurements, simulations were carried out and the controller was implemented using MATLAB/Simulink and dSPACE. The closed-loop poles were mostly assigned with small real parts so that the system would be lightly damped and sharp peaks would be clearly apparent in the measured closed-loop frequency response functions. Locations of the open- and closed-loop poles in the complex s-plane were obtained to verify that the required assignment of poles had taken place.


2019 ◽  
Vol 8 (3) ◽  
pp. 8871-8874

This Work presents the Design and Analysis of LCC Resonant Converter for Power Supplies which are used for high Voltages. LCC Resonant Converter was designed and simulated in both Open loop and closed loop in Matlab Simulink. The Closed loop was found to have a lesser steady state error as compared with that of the open loop. The Stress across the Switches was measured for different input voltages and found that it is linearly proportional to the input voltage. Also the Output Voltage was plotted against different load conditions.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 756 ◽  
Author(s):  
Nazanin Neshatvar ◽  
Peter Langlois ◽  
Richard Bayford ◽  
Andreas Demosthenous

An important component in bioimpedance measurements is the current driver, which can operate over a wide range of impedance and frequency. This paper provides a review of integrated circuit analog current drivers which have been developed in the last 10 years. Important features for current drivers are high output impedance, low phase delay, and low harmonic distortion. In this paper, the analog current drivers are grouped into two categories based on open loop or closed loop designs. The characteristics of each design are identified.


2012 ◽  
Vol 557-559 ◽  
pp. 2049-2053
Author(s):  
Chang Liang Liu ◽  
Wan Gen Jia

Abstract: For the control problem of nonlinear discrete systems, this paper describes the status of current research and analyzes the advantages and disadvantages of open-loop and closed-loop iterative learning controller. A class of nonlinear discrete systems will be extended to the general nonlinear discrete systems. To the general nonlinear discrete systems, a open-closed-loop PD-type iterative learning controller which based on current and last output error instead of last output error only is proposed. It makes use of information on system operation more fully and accurately. Besides, based on norm of λ and mathematical induction, its sufficient condition for convergence is given. In order to test its robustness, a simulation is done in the case of a persistent interference. Simulation results show that it is efficient.


2011 ◽  
Vol 22 (12) ◽  
pp. 1393-1407 ◽  
Author(s):  
HONGYUE DU

This paper investigates the modified function projective synchronization (MFPS) in drive-response dynamical networks (DRDNs) with different nodes, which means that systems in nodes are strictly different. An adaptive open-plus-closed-loop (AOPCL) control method is proposed, which is a practically realizable method and can overcome the model mismatched to achieve synchronization. It is well known that each of the close-loop and open-loop control method possesses some advantages and disadvantages. By combining their advantages, the open-plus-closed-loop (OPCL) control method was proposed by Jackson and Grosu. For arbitrary nonlinear dynamic systems, dx/dt = F(x,t), Jackson and Grosu proved that there exists solutions, x(t), in the neighborhood of any arbitrary goal dynamics g(t) that are entrained to g(t), through the use of an additive controlling action, K(g,x,t) = H(dg/dt,g) + C(g,t)(g(t) - x), which is the sum of the open-loop action, H(dg/dt,g), and a suitable linear closed-loop (feedback) action C(g,t). This method is a practically realizable method and robust to limited accuracy of data and effects of noise. The AOPCL control method preserve the merits of OPCL control method and its closed loop control part can be automatically adapted to suitable constants. Considering time-delays are always unavoidably in the practical situations, MFPS in DRDNs with time-varying coupling delayed is further investigated by the proposed method. Corresponding numerical simulations are performed to verify and illustrate the analytical results.


Sign in / Sign up

Export Citation Format

Share Document