scholarly journals ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient

2005 ◽  
Vol 14 (3-7) ◽  
pp. 1175-1178 ◽  
Author(s):  
M. El Hakiki ◽  
O. Elmazria ◽  
M.B. Assouar ◽  
V. Mortet ◽  
L. Le Brizoual ◽  
...  
2002 ◽  
Vol 720 ◽  
Author(s):  
Sun-Ki Kim ◽  
Min-Jung Park ◽  
Cheol-Yeong Jang ◽  
Hyun-Chul Choi ◽  
Jung-Hee Lee ◽  
...  

AbstractAlxGa1-xN sample with x=0.36 was epitaxially grown on sapphire by MOCVD. SAW velocity of 5420 m/s and TCF (temperature coefficient of frequency) of -51.20 ppm/°C were measured from the SAW devices fabricated on the AlxGa1-xN sample, when kh value was 0.078, at temperatures between –30 °C and 60 °C Electromechanical coupling coefficient was ranged from 1.26 % to 2.22 %. The fabricated SAW filter have shown a good device performance with insertion loss of -33.853 dB and side lobe attenuation of 20 dB.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 332
Author(s):  
Namrata Dewan Soni ◽  
Jyoti Bhola

The present study depicts the first-ever optimized surface acoustic wave (SAW) device based on Beryllium Oxide (BeO) thin film. The feasibility of surface acoustic wave devices based on BeO/128° YX LiNbO3 layered structure has been examined theoretically. The SAW phase velocity, electromechanical coupling coefficient, and temperature coefficient of delay for BeO/128° YX LiNbO3 layered structure are calculated. The layered structure is found to exhibit optimum value of phase velocity (4476 ms−1) and coupling coefficient (~9.66%) at BeO over layer thickness of 0.08λ. The BeO (0.08λ)/128° YX LiNbO3 SAW device is made temperature stable, by integrating it with negative temperature coefficient of delay (TCD) TeO3 over layer of thickness 0.026λ.


2016 ◽  
Vol 848 ◽  
pp. 339-343
Author(s):  
Xiao Kun Zhao ◽  
Bo Ping Zhang ◽  
Lei Zhao ◽  
Li Feng Zhu

The modified behavior of the phase transition temperatures (TO-T and/or TC) between orthorhombic (O), tetragonal (T) and cubic (C) that caused by doping Sb5+ in (Li0.052Na0.493K0.455)(Nb1-xSbx)O3 (LNKNSx) ceramics was reported in the present investigation. The results show that differing from the insensitive TO-T to the Sb5+ content, TC splits into two peaks TCI and TCII when doping Sb5+. The decreased TCI by raising x may be ascribed to the Sb-rich grains and the settled TCII round 480 °C resulting from the Sb-lack ones. The enhanced piezoelectric coefficient d33 value of 263 pC/N and planar mode electromechanical coupling coefficient kp value of 42.5% at x=0.052 can be attributed to the polymorphic phase boundary (PPB) behavior with an appropriate ratio between T and O phases without any second phase.


2018 ◽  
Vol 29 (20) ◽  
pp. 3949-3959 ◽  
Author(s):  
Adriane G Moura ◽  
Alper Erturk

We establish and analyze an analytical framework by accounting for both the piezoelectric and flexoelectric effects in bimorph cantilevers. The focus is placed on the development of governing electroelastodynamic piezoelectric–flexoelectric equations for the problems of resonant energy harvesting, sensing, and actuation. The coupled governing equations are analyzed to obtain closed-form frequency response expressions via modal analysis. The combined piezoelectric–flexoelectric coupling coefficient expression is identified and its size dependence is explored. Specifically, a typical atomistic value of the flexoelectric constant for barium titanate is employed in the model simulations along with its piezoelectric constant from the existing literature. It is shown that the effective electromechanical coupling of a piezoelectric material, such as barium titanate, is significantly enhanced for thickness levels below 100 nm. The electromechanical coupling coefficient of a barium titanate bimorph cantilever increases from the bulk piezoelectric value of 0.065 to the combined piezoelectric–flexoelectric value exceeding 0.3 toward nanometer thickness level. Electromechanical frequency response functions for resonant power generation and dynamic actuation also capture the size-dependent enhancement of the electromechanical coupling. The analytical framework given here can be used for parameter identification and design of nanoscale cantilevers that can be used as energy harvesters, sensors, and actuators.


Sign in / Sign up

Export Citation Format

Share Document