A finite element analysis of the effects of residual stress, substrate roughness and non-uniform stress distribution on the mechanical properties of diamond-like carbon films

2011 ◽  
Vol 20 (5-6) ◽  
pp. 839-844 ◽  
Author(s):  
Chehung Wei ◽  
Jui-Feng Yang
1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


2011 ◽  
Vol 101-102 ◽  
pp. 1096-1100
Author(s):  
Quan Rong Jing ◽  
Feng Xu ◽  
De Gao

Through the test of mechanical properties of the straw-biodegradable tableware, the relationship between performance and processing technology was analyzed and the optimal solution was obtained. And using finite element analysis software, the internal stress distribution under the specific load was obtained based on mechanical properties, more valuable reference method about tableware design was provided through studying the changing intensity.


Author(s):  
Dinc¸er Bozkaya ◽  
Sinan Mu¨ftu¨

The long-term success of dental implants depends, in part, on the stress distribution created in the bone, when the implant is loaded by biting forces. In this presentation, we present our findings on the stress distribution characteristics of a dental implant by varying bone mechanical properties surrounding the implant.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Wen-Chun Jiang ◽  
Jian-Ming Gong ◽  
Hu Chen ◽  
S. T. Tu

This paper presented a finite element analysis of the effect of brazed residual stress on creep for stainless steel plate-fin structure using finite element code ABAQUS. The as-brazed residual stress distribution generated during the brazing process was obtained. Two cases, which are denoted Cases 1 and 2, were analyzed and compared to discuss the effect of as-brazed residual stress on creep. Case 1 was to carry out creep analysis just at the internal operating pressure. Case 2 was to perform the creep analysis considering the internal operating pressure in conjunction with as-brazed residual stress. The results show that due to the mechanical property mismatch between filler metal and base metal, large residual stress is generated in the brazed joint, which has a great influence on creep for stainless steel plate-fin structure. The creep strain and stress distribution of the overall plate-fin structure is obtained. The position that is most likely to fail is the fillet for the plate-fin structure at high temperature. Especially in the fillet interface, the creep strain and stress distribution are discontinuous and uncoordinated, which have great effect on creep failure.


1971 ◽  
Vol 6 (2) ◽  
pp. 89-98 ◽  
Author(s):  
T R Gurney

By means of a form of finite-element analysis and use of a theoretical, radially symmetrical, temperature distribution, the residual stresses resulting from spot heating at the centre of a large circular plate have been calculated. The investigation was concerned in particular with defining the effect of variations in material yield stress, rate of heat input, and peak temperature on the residual-stress distribution.


Sign in / Sign up

Export Citation Format

Share Document