Hydrogen molecule capacity physisorption on BC3 monolayer: First-principles calculations

2021 ◽  
pp. 108583
Author(s):  
J. Labrousse ◽  
K. Belasfar ◽  
A. El Kenz ◽  
A. Benyoussef
Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 322
Author(s):  
Zhengxiong Su ◽  
Sheng Wang ◽  
Chenyang Lu ◽  
Qing Peng

Hydrogen plays a significant role in the microstructure evolution and macroscopic deformation of materials, causing swelling and surface blistering to reduce service life. In the present work, the atomistic mechanisms of hydrogen bubble nucleation in vanadium were studied by first-principles calculations. The interstitial hydrogen atoms cannot form significant bound states with other hydrogen atoms in bulk vanadium, which explains the absence of hydrogen self-clustering from the experiments. To find the possible origin of hydrogen bubble in vanadium, we explored the minimum sizes of a vacancy cluster in vanadium for the formation of hydrogen molecule. We show that a freestanding hydrogen molecule can form and remain relatively stable in the center of a 54-hydrogen atom saturated 27-vacancy cluster.


2009 ◽  
Vol 255 (17) ◽  
pp. 7512-7516 ◽  
Author(s):  
J.X. Guo ◽  
L. Guan ◽  
F. Bian ◽  
Q. Li ◽  
B. Geng ◽  
...  

2014 ◽  
Vol 52 (12) ◽  
pp. 1025-1029
Author(s):  
Min-Wook Oh ◽  
Tae-Gu Kang ◽  
Byungki Ryu ◽  
Ji Eun Lee ◽  
Sung-Jae Joo ◽  
...  

2019 ◽  
Author(s):  
Michele Pizzocchero ◽  
Matteo Bonfanti ◽  
Rocco Martinazzo

The manuscript addresses the issue of the structural distortions occurring at multiple bonds between high main group elements, focusing on group 14. These distortions are known as trans-bending in silenes, disilenes and higher group analogues, and buckling in 2D materials likes silicene and germanene. A simple but correlated \sigma + \pi model is developed and validated with first-principles calculations, and used to explain the different behaviour of second- and higher- row elements.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


Sign in / Sign up

Export Citation Format

Share Document