scholarly journals Data retrieved from in silico evaluation of vaccine potential of ZnuD protein in Acinetobacter baumannii

Data in Brief ◽  
2020 ◽  
Vol 31 ◽  
pp. 105892
Author(s):  
Maryam Mobarak Qamsari ◽  
Iraj Rasooli ◽  
Shakiba Darvish Alipour Astaneh
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gamal Wareth ◽  
Christian Brandt ◽  
Lisa D. Sprague ◽  
Heinrich Neubauer ◽  
Mathias W. Pletz

Abstract Background Acinetobacter baumannii ability to develop and acquire resistance makes it one of the most critical nosocomial pathogens globally. Whole-genome sequencing (WGS) was applied to identify the acquired or mutational variants of antimicrobial resistance (AMR) genes in 85 German A. baumannii strains utilizing Illumina technology. Additionally, the whole genome of 104 German isolates deposited in the NCBI database was investigated. Results In-silico analysis of WGS data revealed wide varieties of acquired AMR genes mediating resistance mostly to aminoglycosides, cephalosporins, carbapenems, sulfonamides, tetracyclines and macrolides. In the 189 analyzed genomes, the ant (3″)-IIa conferring resistance to aminoglycosides was the most frequent (55%), followed by blaADC.25 (38.6%) conferring resistance to cephalosporin, blaOXA-23 (29%) and the blaOXA-66 variant of the intrinsic blaOXA-51-likes (26.5%) conferring resistance to carbapenems, the sul2 (26%) conferring resistance to sulfonamides, the tet. B (19.5%) conferring resistance to tetracycline, and mph. E and msr. E (19%) conferring resistance to macrolides. blaTEM variants conferring resistance to cephalosporins were found in 12% of genomes. Thirteen variants of the intrinsic blaOXA-51 carbapenemase gene, blaOXA-510 and blaADC-25 genes were found in isolates obtained from dried milk samples. Conclusion The presence of strains harboring acquired AMR genes in dried milk raises safety concerns and highlights the need for changes in producing dried milk. Acquired resistance genes and chromosomal gene mutation are successful routes for disseminating AMR determinants among A. baumannii. Identification of chromosomal and plasmid-encoded AMR in the genome of A. baumannii may help understand the mechanism behind the genetic mobilization and spread of AMR genes.


2017 ◽  
Vol 25 (1) ◽  
pp. 205-213 ◽  
Author(s):  
Hadise Bazmara ◽  
Iraj Rasooli ◽  
Abolfazl Jahangiri ◽  
Fatemeh Sefid ◽  
Shakiba Darvish Alipour Astaneh ◽  
...  

Author(s):  
A. Aldrin Joshua ◽  
A. S. Smiline Girija ◽  
P. Sankar Ganesh ◽  
J. Vijayashree Priyadharsini

Background: Acinetobacter baumannii is a coccobacillus that is Gram negative, non motile, non fermentative and oxidase negative. It is the most common and successful nosocomial pathogen recognised by WHO. This dreadful pathogen causes urinary tract infections, ventilator associated pneumonia (VAP), bacteremia, etc., These infections are most common in hospital wards especially Intensive Care Unit (ICU). The infections are due to biofilm formation by the virulent genes of A. baumannii, and the common biofilm-associated genes of A. baumannii were bap, csuE, fimH, epsA, bfmS, ptk, pgaB, ompA, blaPER-1. Among these, bap, epsA and ompA genes are highly prevalent among the clinical strains of A. baumannii. Aim:  To detect the three vital biofilm-associated genes of A. baumannii by in-silico PCR analysis. Materials and Methods: 19 isolates of A. baumannii were selected and 3 target genes, namely epsA, ompA and bap gene were used for the amplification process through in-silico PCR simulation tools. Evolutionary analysis was done for the ompA gene. Results: The epsA gene was expressed in 10.52% of the total strains selected with the highest occurrence of ompA gene as 57.89%. bap gene was not observed from the study strains included. From evolutionary analysis based on ompA distributed strains, the Acinetobacter baumannii SDF and Acinetobacter baumannii BJAB0715 might be the parental strains where the evolution of strains would have started. Through successive generations, the Acinetobacter baumannii MDR-ZJ06 and Acinetobacter baumannii TYTH-1 had become the multidrug resistant strains present in the environment. Conclusion: The findings of the study confirms the distribution of epsA and ompA genes among the 19 different strains of A. baumannii. The study suggests periodical monitoring of biofilm based virulence genes among the clinical strains and to curtail the A. baumannii infections.


2020 ◽  
Vol 26 (5) ◽  
pp. 456-467
Author(s):  
Elaheh Zadeh Hosseingholi ◽  
Gholamreza Zarrini ◽  
Marayam Pashazadeh ◽  
Seyed Mohammad Gheibi Hayat ◽  
Ghader Molavi

Sign in / Sign up

Export Citation Format

Share Document