Antigenic Properties of Iron Regulated Proteins in Acinetobacter baumannii: An In Silico Approach

2017 ◽  
Vol 25 (1) ◽  
pp. 205-213 ◽  
Author(s):  
Hadise Bazmara ◽  
Iraj Rasooli ◽  
Abolfazl Jahangiri ◽  
Fatemeh Sefid ◽  
Shakiba Darvish Alipour Astaneh ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sathishkumar Arumugam ◽  
Prasad Varamballi

AbstractKyasanur forest disease virus (KFDV) causing tick-borne hemorrhagic fever which was earlier endemic to western Ghats, southern India, it is now encroaching into new geographic regions, but there is no approved medicine or effective vaccine against this deadly disease. In this study, we did in-silico design of multi-epitope subunit vaccine for KFDV. B-cell and T-cell epitopes were predicted from conserved regions of KFDV envelope protein and two vaccine candidates (VC1 and VC2) were constructed, those were found to be non-allergic and possess good antigenic properties, also gives cross-protection against Alkhurma hemorrhagic fever virus. The 3D structures of vaccine candidates were built and validated. Docking analysis of vaccine candidates with toll-like receptor-2 (TLR-2) by Cluspro and PatchDock revealed strong affinity between VC1 and TLR2. Ligplot tool was identified the intermolecular hydrogen bonds between vaccine candidates and TLR-2, iMOD server confirmed the stability of the docking complexes. JCAT sever ensured cloning efficiency of both vaccine constructs and in-silico cloning into pET30a (+) vector by SnapGene showed successful translation of epitope region. IMMSIM server was identified increased immunological responses. Finally, multi-epitope vaccine candidates were designed and validated their efficiency, it may pave the way for up-coming vaccine and diagnostic kit development.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gamal Wareth ◽  
Christian Brandt ◽  
Lisa D. Sprague ◽  
Heinrich Neubauer ◽  
Mathias W. Pletz

Abstract Background Acinetobacter baumannii ability to develop and acquire resistance makes it one of the most critical nosocomial pathogens globally. Whole-genome sequencing (WGS) was applied to identify the acquired or mutational variants of antimicrobial resistance (AMR) genes in 85 German A. baumannii strains utilizing Illumina technology. Additionally, the whole genome of 104 German isolates deposited in the NCBI database was investigated. Results In-silico analysis of WGS data revealed wide varieties of acquired AMR genes mediating resistance mostly to aminoglycosides, cephalosporins, carbapenems, sulfonamides, tetracyclines and macrolides. In the 189 analyzed genomes, the ant (3″)-IIa conferring resistance to aminoglycosides was the most frequent (55%), followed by blaADC.25 (38.6%) conferring resistance to cephalosporin, blaOXA-23 (29%) and the blaOXA-66 variant of the intrinsic blaOXA-51-likes (26.5%) conferring resistance to carbapenems, the sul2 (26%) conferring resistance to sulfonamides, the tet. B (19.5%) conferring resistance to tetracycline, and mph. E and msr. E (19%) conferring resistance to macrolides. blaTEM variants conferring resistance to cephalosporins were found in 12% of genomes. Thirteen variants of the intrinsic blaOXA-51 carbapenemase gene, blaOXA-510 and blaADC-25 genes were found in isolates obtained from dried milk samples. Conclusion The presence of strains harboring acquired AMR genes in dried milk raises safety concerns and highlights the need for changes in producing dried milk. Acquired resistance genes and chromosomal gene mutation are successful routes for disseminating AMR determinants among A. baumannii. Identification of chromosomal and plasmid-encoded AMR in the genome of A. baumannii may help understand the mechanism behind the genetic mobilization and spread of AMR genes.


Data in Brief ◽  
2020 ◽  
Vol 31 ◽  
pp. 105892
Author(s):  
Maryam Mobarak Qamsari ◽  
Iraj Rasooli ◽  
Shakiba Darvish Alipour Astaneh

Author(s):  
A. Aldrin Joshua ◽  
A. S. Smiline Girija ◽  
P. Sankar Ganesh ◽  
J. Vijayashree Priyadharsini

Background: Acinetobacter baumannii is a coccobacillus that is Gram negative, non motile, non fermentative and oxidase negative. It is the most common and successful nosocomial pathogen recognised by WHO. This dreadful pathogen causes urinary tract infections, ventilator associated pneumonia (VAP), bacteremia, etc., These infections are most common in hospital wards especially Intensive Care Unit (ICU). The infections are due to biofilm formation by the virulent genes of A. baumannii, and the common biofilm-associated genes of A. baumannii were bap, csuE, fimH, epsA, bfmS, ptk, pgaB, ompA, blaPER-1. Among these, bap, epsA and ompA genes are highly prevalent among the clinical strains of A. baumannii. Aim:  To detect the three vital biofilm-associated genes of A. baumannii by in-silico PCR analysis. Materials and Methods: 19 isolates of A. baumannii were selected and 3 target genes, namely epsA, ompA and bap gene were used for the amplification process through in-silico PCR simulation tools. Evolutionary analysis was done for the ompA gene. Results: The epsA gene was expressed in 10.52% of the total strains selected with the highest occurrence of ompA gene as 57.89%. bap gene was not observed from the study strains included. From evolutionary analysis based on ompA distributed strains, the Acinetobacter baumannii SDF and Acinetobacter baumannii BJAB0715 might be the parental strains where the evolution of strains would have started. Through successive generations, the Acinetobacter baumannii MDR-ZJ06 and Acinetobacter baumannii TYTH-1 had become the multidrug resistant strains present in the environment. Conclusion: The findings of the study confirms the distribution of epsA and ompA genes among the 19 different strains of A. baumannii. The study suggests periodical monitoring of biofilm based virulence genes among the clinical strains and to curtail the A. baumannii infections.


2021 ◽  
Author(s):  
Sondes Haddad-Boubaker ◽  
Houcemeddine Othman ◽  
Rabeb Touati ◽  
Kaouther Ayouni ◽  
Marwa Lakhal ◽  
...  

Abstract Background: Coronavirus Disease 2019 (COVID-19) is a viral pandemic disease that may induce severe pneumonia in humans. In this paper, we investigated the putative implication of 12 vaccines, including BCG, OPV and MMR in the protection against COVID-19. Sequences of the main antigenic proteins in the investigated vaccines and SARS-CoV-2 proteins were compared to identify similar patterns. The immunogenic effect of identified segments was, then, assessed using a combination of structural and antigenicity prediction tools.Results: A total of 14 highly similar segments were identified in the investigated vaccines. Structural and antigenicity prediction analysis showed that, among the identified patterns, three segments in Hepatitis B, Tetanus, and Measles proteins presented antigenic properties that can induce putative protective effect against COVID-19. Conclusions: Our results suggest a possible protective effect of HBV, Tetanus and Measles vaccines against COVID-19, which may explain the variation of the disease severity among regions.


2020 ◽  
Vol 26 (5) ◽  
pp. 456-467
Author(s):  
Elaheh Zadeh Hosseingholi ◽  
Gholamreza Zarrini ◽  
Marayam Pashazadeh ◽  
Seyed Mohammad Gheibi Hayat ◽  
Ghader Molavi

Sign in / Sign up

Export Citation Format

Share Document