scholarly journals Dataset of 18O and 2H in streamflow across Canada: A national resource for tracing water sources, water balance and predictive modelling

Data in Brief ◽  
2021 ◽  
Vol 34 ◽  
pp. 106723
Author(s):  
J.J. Gibson ◽  
P. Eby ◽  
T.A. Stadnyk ◽  
T. Holmes ◽  
S.J. Birks ◽  
...  
2011 ◽  
Vol 63 (9) ◽  
pp. 1873-1879 ◽  
Author(s):  
John Hunt ◽  
Martin Anda ◽  
Goen Ho

Alternate water sources are being implemented in urban areas to augment scheme water supplied by a water utility to homes. These sources include residential wells, rainwater tanks and greywater systems. Greater water efficiency can be achieved when these systems are designed to match a water source to a given demand based on both water quantity and quality parameters. In this way the use of an alternate water source can be maximised and the use of the high quality scheme water minimised. This paper examines the use of multiple alternate water sources sequentially to supply the same demand point potentially optimising the use of all available water sources. It also allows correct sizing of such water systems and their components to reduce scheme water demand. A decision support tool based on water balance modelling was developed that considers such water options at the household scale. Application of this tool to eight scenarios for both large and small house lots shows that using alternate water sources individually can result in significant scheme water savings. However by integrating these sources additional scheme water saving can be made.


2020 ◽  
Author(s):  
Kevin J Devito ◽  
Lindsay M James ◽  
Daniel S Alessi ◽  
Kelly Hokanson ◽  
Nick Kettridge ◽  
...  

<p>Peatlands are integral to sustaining landscape eco-hydrological function in water-limited boreal landscapes and serve as important water sources for headwater streams and surrounding forests, and recently for mega-scale watershed construction associated with resource extraction. Despite the regional moisture deficit of the Boreal plains, peatlands and margin swamps exist on topographic highs where low permeability (clogging) layers occur proximal to the surface and are apparently isolated from surface water and local and regional groundwater inputs. The <span>water generating mechanisms (</span>external water sources, internal feedback mechanisms) that<span> enable peatland formation with such </span>delicate water balances<span> in these </span>unique hydrogeologic settings are not well known, and have large implications for understanding the eco-hydrologic role of natural peatlands as well as direct peatland construction in drier boreal landscapes.</p><p>A multi-year sampling campaign was conducted to collect hydrometric, geochemical (DOC, pH, major cations and anions), and isotopic (D/H, <sup>18</sup>O/<sup>16</sup>O) data from a small isolated peatland-margin swamp complex. We explored the relative roles of margin swamps in buffering water loss and generating perched groundwater, shading and wind protection from adjacent forests, snow redistribution in and around the peatland, and wetland feedbacks on maintenance of peatland moisture and ecosystem function. Long-term (18 year) records of water table gradients between the peatland and an adjacent forest combined with 3 year high intensity <!-- Not sure if you mean to separate the long term data from the high intensity data from Lindsey’s project -->water balance calculations show the peatland to be a source of water to adjacent forests during this period and illustrate the dominance of autogenic wetland feedbacks over allogenic controls (external sources) in peatland development at this location. Contrasts in water storage due to the morphometry <!-- Morphometry? -->of the clogging layer appear to the dominant determinants of peatland and swamp form and function. Layers of decomposed peat and fine textured mineral soils in margin swamps with low water storage potential promoted frequent soil saturation and anoxia, limiting forest vegetation growth and water uptake, further enhancing wetland vegetation, water conservation and generation within the wetland complex. Shading and wind protection from adjacent forests appear to influence soil frost duration and atmospheric demand to further reduce evapotranspiration losses contributing to a slight moisture surplus in the wetland complex relative to the adjacent forest. Understanding the water balance and moisture surplus controls in isolated peatlands sheds light on the relative role of allogenic and autogenic controls on peatlands with implications for: 1) assessing regional eco-hydrological roles of peatland and forestland covers, 2) predicting landscape-scale response to environmental change and land use, and 3) directing landscape scale reclamation or large reconstruction projects over a range of geologic settings in water-limited boreal regions.</p>


2010 ◽  
Vol 332 (1-2) ◽  
pp. 429-449 ◽  
Author(s):  
Paul M. Feikema ◽  
Jim D. Morris ◽  
Luke D. Connell

1999 ◽  
Author(s):  
M. Yvonne Jackson ◽  
Margaret C. Graves

Author(s):  
Alexey Shcherbakov ◽  
Valentin Zhezmer

Department of hydraulic engineering and hydraulics FGBNU «VNIIGiM them. A.N. Kostyakova «has a long history. For many years, the department’s staff has been such scientists and water engineers with extensive experience as M.A. Volynov, V.S. Verbitsky, S.S. Medvedev, N.V. Lebedev, B.C. Panfilov, T.G. Voynich-Syanozhentsky, V.A. Golubkova, G.V. Lyapin and others. The department solved a wide range of tasks, the main areas of research were the following: – theoretical and applied hydrodynamics and hydraulics, with reference to the open channel flows that affect the state and level of safety of the hydraulic structures; – integrated use and protection of water bodies – water sources and water sources of water resources used in land reclamation; – development of measures and technical solutions for the protection of objects from the negative effects of water; – theoretical substantiation of works to improve the safety level of the GTS (declaration); – development and implementation of digitalization methods for solving design, construction, operation and control of landreclamation facilities. Currently, promising areas of research is the development of a decision-making algorithm in the designation of measures to rationalize the provision of resources to water amelioration. The algorithm is developed on the basis of a detailed study, systematization and processing of data both on safety and on the efficiency of systems and structures, ensuring the delivery of irrigation water of the required quality and in sufficient quantity from a water source to the field.


2015 ◽  
Vol 65 ◽  
pp. 175-192 ◽  
Author(s):  
P Hlavinka ◽  
KC Kersebaum ◽  
M Dubrovský ◽  
M Fischer ◽  
E Pohanková ◽  
...  

Waterlines ◽  
1983 ◽  
Vol 1 (4) ◽  
pp. 22-25
Author(s):  
Louise Fortmann
Keyword(s):  

Waterlines ◽  
1994 ◽  
Vol 13 (2) ◽  
pp. 28-31 ◽  
Author(s):  
Astier Almedom ◽  
Christian Odhiambo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document