Replication Protein A phosphorylation and the cellular response to DNA damage

DNA Repair ◽  
2004 ◽  
Vol 3 (8-9) ◽  
pp. 1015-1024 ◽  
Author(s):  
Sara K. Binz ◽  
Anne M. Sheehan ◽  
Marc S. Wold
DNA Repair ◽  
2014 ◽  
Vol 21 ◽  
pp. 12-23 ◽  
Author(s):  
Gloria E.O. Borgstahl ◽  
Kerry Brader ◽  
Adam Mosel ◽  
Shengqin Liu ◽  
Elisabeth Kremmer ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2390-2398 ◽  
Author(s):  
Rigu Gupta ◽  
Sudha Sharma ◽  
Joshua A. Sommers ◽  
Mark K. Kenny ◽  
Sharon B. Cantor ◽  
...  

The BRCA1 associated C-terminal helicase (BACH1, designated FANCJ) is implicated in the chromosomal instability genetic disorder Fanconi anemia (FA) and hereditary breast cancer. A critical role of FANCJ helicase may be to restart replication as a component of downstream events that occur during the repair of DNA cross-links or double-strand breaks. We investigated the potential interaction of FANCJ with replication protein A (RPA), a single-stranded DNA-binding protein implicated in both DNA replication and repair. FANCJ and RPA were shown to coimmunoprecipitate most likely through a direct interaction of FANCJ and the RPA70 subunit. Moreover, dependent on the presence of BRCA1, FANCJ colocalizes with RPA in nuclear foci after DNA damage. Our data are consistent with a model in which FANCJ associates with RPA in a DNA damage-inducible manner and through the protein interaction RPA stimulates FANCJ helicase to better unwind duplex DNA substrates. These findings identify RPA as the first regulatory partner of FANCJ. The FANCJ-RPA interaction is likely to be important for the role of the helicase to more efficiently unwind DNA repair intermediates to maintain genomic stability.


2000 ◽  
Vol 20 (8) ◽  
pp. 2696-2705 ◽  
Author(s):  
Gregory Rodrigo ◽  
Sophie Roumagnac ◽  
Marc S. Wold ◽  
Bernard Salles ◽  
Patrick Calsou

ABSTRACT Exposure of mammalian cells to short-wavelength light (UVC) triggers a global response which can either counteract the deleterious effect of DNA damage by enabling DNA repair or lead to apoptosis. Several stress-activated protein kinases participate in this response, making phosphorylation a strong candidate for being involved in regulating the cellular damage response. One factor that is phosphorylated in a UVC-dependent manner is the 32-kDa subunit of the single-stranded DNA-binding replication protein A (RPA32). RPA is required for major cellular processes like DNA replication, and removal of DNA damage by nucleotide excision repair (NER). In this study we examined the signal which triggers RPA32 hyperphosphorylation following UVC irradiation in human cells. Hyperphosphorylation of RPA was observed in cells from patients with either NER or transcription-coupled repair (TCR) deficiency (A, C, and G complementation groups of xeroderma pigmentosum and A and B groups of Cockayne syndrome, respectively). This exclude both NER intermediates and TCR as essential signals for RPA hyperphosphorylation. However, we have observed that UV-sensitive cells deficient in NER and TCR require lower doses of UV irradiation to induce RPA32 hyperphosphorylation than normal cells, indicating that persistent unrepaired lesions contribute to RPA phosphorylation. Finally, the results of UVC irradiation experiments on nonreplicating cells and S-phase-synchronized cells emphasize a major role for DNA replication arrest in the presence of UVC lesions in RPA UVC-induced hyperphosphorylation in mammalian cells.


Hereditas ◽  
2020 ◽  
Vol 157 (1) ◽  
Author(s):  
Xiaoling Wu ◽  
Youwen Zhong ◽  
Qing Chen ◽  
Xin Zhang ◽  
Hua Zhang

Abstract Background Cervical cancer (CC) is the third most common gynecological malignancy around the world. Cisplatin is an effective drug, but cisplatin resistance is a vital factor limiting the clinical usage of cisplatin. Enhancer of mRNA decapping protein 4 (EDC4) is a known regulator of mRNA decapping, which was related with genome stability and sensitivity of drugs. This research was to investigate the mechanism of EDC4 on cisplatin resistance in CC. Two human cervical cancer cell lines, HeLa and SiHa, were used to investigate the role of EDC4 on cisplatin resistance in vitro. The knockdown or overexpression of EDC4 or replication protein A (RPA) in HeLa or SiHa cells was performed by transfection. Cell viability was analyzed by MTT assay. The growth of cancer cells was evaluated by colony formation assay. DNA damage was measured by γH2AX (a sensitive DNA damage response marker) immunofluorescent staining. The binding of EDC4 and RPA was analyzed by immunoprecipitation. Results EDC4 knockdown in cervical cancer cells (HeLa and SiHa) enhanced cisplatin sensitivity and cisplatin induced cell growth inhibition and DNA damage. EDC4 overexpression reduced DNA damage caused by cisplatin and enhanced cell growth of cervical cancer cells. EDC4 could interact with RPA and promote RPA phosphorylation. RPA knockdown reversed the inhibitory effect of EDC4 on cisplatin-induced DNA damage. Conclusion The present results indicated that EDC4 is responsible for the cisplatin resistance partly through interacting with RPA in cervical cancer by alleviating DNA damage. This study indicated that EDC4 or RPA may be novel targets to combat chemotherapy resistance in cervical cancer. Graphical abstract


2014 ◽  
Author(s):  
Kerry Brader ◽  
Adam Mosel ◽  
Shengqin Liu ◽  
Elizabeth Kremmer ◽  
Kaitlin Goettsch ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116093 ◽  
Author(s):  
Boting Ning ◽  
Michael D. Feldkamp ◽  
David Cortez ◽  
Walter J. Chazin ◽  
Katherine L. Friedman ◽  
...  

2006 ◽  
Vol 281 (38) ◽  
pp. 27855-27861 ◽  
Author(s):  
Jerzy Majka ◽  
Sara K. Binz ◽  
Marc S. Wold ◽  
Peter M. J. Burgers

Sign in / Sign up

Export Citation Format

Share Document