Cell cycle-dependent positive and negative functions of Fun30 chromatin remodeler in DNA damage response

DNA Repair ◽  
2017 ◽  
Vol 50 ◽  
pp. 61-70 ◽  
Author(s):  
Jasmine Siler ◽  
Bowen Xia ◽  
Carina Wong ◽  
Morgan Kath ◽  
Xin Bi
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1265-1265
Author(s):  
Christine von Klitzing ◽  
Florian Bassermann ◽  
Stephan W. Morris ◽  
Christian Peschel ◽  
Justus Duyster

Abstract The nuclear interaction partner of ALK (NIPA) is a nuclear protein identified by our group in a screen for NPM-ALK interaction partners. We recently reported that NIPA is an F-box protein that assembles with SKP1, Cul1 and Roc1 to establish a novel SCF-type E3 ubiquitin ligase. The formation of the SCFNIPA complex is regulated by cell cycle-dependent phosphorylation of NIPA that restricts SCFNIPA assembly from G1- to late S-phase, thus allowing its substrates to be active from late S-phase throughout mitosis. Proteins involved in cell cycle regulation frequently play a role in DNA damage checkpoints. We therefore sought to determine whether NIPA has a function in the cellular response to genotoxic stress. For this reason we treated NIH/3T3 cells with various DNA-damaging agents. Surprisingly, we observed phosphorylation of NIPA in response to some of these agents, including UV radiation. This phosphorylation was cell cycle phase independent and thus independent of the physiological cell cycle dependent phosphorylation of NIPA. The relevant phosphorylation site is identical to the respective site in the course of cell cycle-dependent phosphorylation of NIPA. Thus, phosphorylation of NIPA upon genotoxic stress would inactivate the SCFNIPA complex in a cell cycle independent manner. Interestingly, this phosphorylation site lies within a consensus site of the Chk1/Chk2 checkpoint kinases. These kinases are central to DNA damage checkpoint signaling. Chk1 is activated by ATR in response to blocked replication forks as they occur after treatment with UV. We performed experiments using the ATM/ATR inhibitor caffeine and the Chk1 inhibitor SB218078 to investigate a potential role of Chk1 in NIPA phosphorylation. Indeed, we found both inhibitors to prevent UV-induced phosphorylation of NIPA. Current experiments applying Chk1 knock-out cells will unravel the role of Chk1 in NIPA phosphorylation. Additional experiments were performed to investigate a function for NIPA in DNA-damage induced apoptosis. In this regard, we observed overexpression of NIPA WT to induce apoptosis in response to UV, whereas no proapoptotic effect was seen with the phosphorylation deficient NIPA mutant. Therefore, the phosphorylated form of NIPA may be involved in apoptotic signaling pathways. In summary, we present data suggesting a cell cycle independent function for NIPA. This activity is involved in DNA damage response and may be involved in regulating apoptosis upon genotoxic stress.


2009 ◽  
Vol 37 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Stephen P. Jackson

The DNA of all cells is continually under assault from a wide range of DNA-damaging agents. To counter this threat to their genetic integrity, cells possess systems, collectively known as the DDR (DNA-damage response), to detect DNA damage, signal its presence and mediate its repair. In the present article, I provide an overview of the DDR and then describe how work in my laboratory and elsewhere has identified some of the key protein players that mediate cellular responses to the most cytotoxic form of DNA damage: the DNA DSB (double-strand break). I also discuss some of my laboratory's recent work, which has revealed that the way cells respond to DSBs is modulated in a cell-cycle-dependent manner to ensure that the cell uses the DSB repair system that is most suited to its cell-cycle stage. Finally, I explain how our increasing knowledge of the DDR is suggesting new avenues for treating cancer and provide an example of a DDR-inhibitory drug that is showing promise in clinical trials.


2019 ◽  
Vol 105 (3) ◽  
pp. 839-853
Author(s):  
Aglaia Kyrilli ◽  
David Gacquer ◽  
Vincent Detours ◽  
Anne Lefort ◽  
Frédéric Libert ◽  
...  

Abstract Background The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. Methods Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. Results Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. Conclusions TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kerstin Felgentreff ◽  
Catharina Schuetz ◽  
Ulrich Baumann ◽  
Christian Klemann ◽  
Dorothee Viemann ◽  
...  

DNA damage occurs constantly in every cell triggered by endogenous processes of replication and metabolism, and external influences such as ionizing radiation and intercalating chemicals. Large sets of proteins are involved in sensing, stabilizing and repairing this damage including control of cell cycle and proliferation. Some of these factors are phosphorylated upon activation and can be used as biomarkers of DNA damage response (DDR) by flow and mass cytometry. Differential survival rates of lymphocyte subsets in response to DNA damage are well established, characterizing NK cells as most resistant and B cells as most sensitive to DNA damage. We investigated DDR to low dose gamma radiation (2Gy) in peripheral blood lymphocytes of 26 healthy donors and 3 patients with ataxia telangiectasia (AT) using mass cytometry. γH2AX, p-CHK2, p-ATM and p53 were analyzed as specific DDR biomarkers for functional readouts of DNA repair efficiency in combination with cell cycle and T, B and NK cell populations characterized by 20 surface markers. We identified significant differences in DDR among lymphocyte populations in healthy individuals. Whereas CD56+CD16+ NK cells showed a strong γH2AX response to low dose ionizing radiation, a reduced response rate could be observed in CD19+CD20+ B cells that was associated with reduced survival. Interestingly, γH2AX induction level correlated inversely with ATM-dependent p-CHK2 and p53 responses. Differential DDR could be further noticed in naïve compared to memory T and B cell subsets, characterized by reduced γH2AX, but increased p53 induction in naïve T cells. In contrast, DDR was abrogated in all lymphocyte populations of AT patients. Our results demonstrate differential DDR capacities in lymphocyte subsets that depend on maturation and correlate inversely with DNA damage-related survival. Importantly, DDR analysis of peripheral blood cells for diagnostic purposes should be stratified to lymphocyte subsets.


Sign in / Sign up

Export Citation Format

Share Document