DNA damage and regulation of protein homeostasis

DNA Repair ◽  
2021 ◽  
Vol 105 ◽  
pp. 103155
Author(s):  
Tanya T. Paull
Open Biology ◽  
2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Anna Ainslie ◽  
Wouter Huiting ◽  
Lara Barazzuol ◽  
Steven Bergink

Genome instability and loss of protein homeostasis are hallmark events of age-related diseases that include neurodegeneration. Several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis are characterized by protein aggregation, while an impaired DNA damage response (DDR) as in many genetic DNA repair disorders leads to pronounced neuropathological features. It remains unclear to what degree these cellular events interconnect with each other in the development of neurological diseases. This review highlights how the loss of protein homeostasis and genome instability influence one other. We will discuss studies that illustrate this connection. DNA damage contributes to many neurodegenerative diseases, as shown by an increased level of DNA damage in patients, possibly due to the effects of protein aggregates on chromatin, the sequestration of DNA repair proteins and novel putative DNA repair functions. Conversely, genome stability is also important for protein homeostasis. For example, gene copy number variations and the loss of key DDR components can lead to marked proteotoxic stress. An improved understanding of how protein homeostasis and genome stability are mechanistically connected is needed and promises to lead to the development of novel therapeutic interventions.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Hang T. Pham ◽  
Tram T. T. Nguyen ◽  
Lap P. Nguyen ◽  
Sang-Seop Han ◽  
Yun-Sook Lim ◽  
...  

ABSTRACT Hepatitis C virus (HCV) infection may cause chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV exploits cellular machineries to establish persistent infection. We demonstrate here that ubiquitin-conjugating enzyme E2S (UBE2S), a member of the ubiquitin-conjugating enzyme family (E2s), was downregulated by endoplasmic reticulum stress caused by HCV in Huh7 cells. UBE2S interacted with domain I of HCV NS5A and degraded NS5A protein through the Lys11-linked proteasome-dependent pathway. Overexpression of UBE2S suppressed viral propagation, while depletion of UBE2S expression increased viral infectivity. Enzymatically inactive UBE2S C95A mutant exerted no antiviral activity, suggesting that ubiquitin-conjugating enzymatic activity was required for the suppressive role of UBE2S. Chromatin ubiquitination plays a crucial role in the DNA damage response. We showed that the levels of UBE2S and Lys11 chains bound to the chromatin were markedly decreased in the context of HCV replication, rendering HCV-infected cells more sensitive to DNA damage. These data suggest that HCV counteracts antiviral activity of UBE2S to optimize viral propagation and may contribute to HCV-induced liver pathogenesis. IMPORTANCE Protein homeostasis is essential to normal cell function. HCV infection disturbs the protein homeostasis in the host cells. Therefore, host cells exert an anti-HCV activity in order to maintain normal cellular metabolism. We showed that UBE2S interacted with HCV NS5A and degraded NS5A protein through the Lys11-linked proteasome-dependent pathway. However, HCV has evolved to overcome host antiviral activity. We demonstrated that the UBE2S expression level was suppressed in HCV-infected cells. Since UBE2S is an ubiquitin-conjugating enzyme and this enzyme activity is involved in DNA damage repair, HCV-infected cells are more sensitive to DNA damage, and thus UBE2S may contribute to viral oncogenesis.


2021 ◽  
Author(s):  
Wouter Huiting ◽  
Alejandra Duque-Jaramillo ◽  
Renée Seinstra ◽  
Harm Kampinga ◽  
Ellen Nollen ◽  
...  

To maintain genome integrity, cells rely on a complex system of DNA repair pathways and cell cycle checkpoints, together referred to as the DNA damage response (DDR). Impairments in DDR pathways are linked to cancer, but also to a wide range of degenerative processes, frequently including progressive neuropathy and accelerated aging. How defects in mechanistically distinct DDR pathways can drive similar degenerative phenotypes is not understood. Here we show that defects in various DDR components are linked to a loss of protein homeostasis in Caenorhabditis elegans. Prolonged silencing of atm-1, brc-1 or ung-1, central components in respectively checkpoint signaling, double strand break repair and base excision repair enhances the global aggregation of proteins occurring in adult animals, and accelerates polyglutamine protein aggregation in a model for neurodegenerative diseases. Overexpression of the molecular chaperone HSP-16.2 prevents enhanced protein aggregation in atm-1, brc-1 or ung-1-compromised animals. Strikingly, rebalancing protein homeostasis with HSP-16.2 almost completely rescues age-associated impaired motor function in these animals as well. This reveals that the consequences of a loss of atm-1, brc-1 or ung-1 converge on an impaired protein homeostasis to cause degeneration. These findings indicate that a loss of protein homeostasis is a crucial downstream consequence of DNA repair defects, and thereby provide an attractive novel framework for understanding the broad link between DDR defects and degenerative processes.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 75-78 ◽  
Author(s):  
O. L. Kantidze ◽  
A. K. Velichko ◽  
A. V. Luzhin ◽  
S. V. Razin

Although the heat-stress response has been extensively studied for decades, very little is known about its effects on nucleic acids and nucleic acid-associated processes. This is due to the fact that the research has focused on the study of heat shock proteins and factors (HSPs and HSFs), their involvement in the regulation of transcription, protein homeostasis, etc. Recently, there has been some progress in the study of heat stress effects on DNA integrity. In this review, we summarize and discuss well-known and potential mechanisms of formation of various heat stress-induced DNA damage.


2004 ◽  
Vol 171 (4S) ◽  
pp. 416-416
Author(s):  
Tamer M. Said ◽  
Shyam Allamaneni ◽  
Kiran P. Nallella ◽  
Rakesh K. Sharma ◽  
Sijo J. Parekattil ◽  
...  

Nature ◽  
2020 ◽  
Vol 579 (7800) ◽  
pp. 499-500
Author(s):  
Irene Gallina ◽  
Julien P. Duxin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document