Attenuation of biologically effective UV doses under overcast skies: a case study from the eastern Atlantic sector of the Southern Ocean

2004 ◽  
Vol 51 (22-24) ◽  
pp. 2673-2682 ◽  
Author(s):  
Deliang Chen ◽  
Sten-Åke Wängberg ◽  
Angela Wulff ◽  
Katarina Borne
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elena Schall ◽  
Karolin Thomisch ◽  
Olaf Boebel ◽  
Gabriele Gerlach ◽  
Sari Mangia Woods ◽  
...  

AbstractHumpback whales are thought to undertake annual migrations between their low latitude breeding grounds and high latitude feeding grounds. However, under specific conditions, humpback whales sometimes change their migratory destination or skip migration overall. Here we document the surprising persistent presence of humpback whales in the Atlantic sector of the Southern Ocean during five years (2011, 2012, 2013, 2017, and 2018) using passive acoustic data. However, in the El Niño years 2015 and 2016, humpback whales were virtually absent. Our data show that humpback whales are systematically present in the Atlantic sector of the Southern Ocean and suggest that these whales are particularly sensitive to climate oscillations which have profound effects on winds, sea ice extent, primary production, and especially krill productivity.


2020 ◽  
Vol 160 ◽  
pp. 105025
Author(s):  
Ben J.O. Robinson ◽  
David K.A. Barnes ◽  
Simon A. Morley

Polar Biology ◽  
2014 ◽  
Vol 37 (6) ◽  
pp. 891-895
Author(s):  
L. Nøttestad ◽  
B. A. Krafft ◽  
H. Søiland ◽  
G. Skaret

1997 ◽  
Vol 12 (4) ◽  
pp. 594-603 ◽  
Author(s):  
C. C. Nürnberg ◽  
G. Bohrmann ◽  
M. Schlüter ◽  
M. Frank

Geology ◽  
2004 ◽  
Vol 32 (4) ◽  
pp. 317 ◽  
Author(s):  
Simon H.H. Nielsen ◽  
Nalân Koç ◽  
Xavier Crosta

2021 ◽  
Vol 8 ◽  
Author(s):  
Emily Rowlands ◽  
Tamara Galloway ◽  
Matthew Cole ◽  
Ceri Lewis ◽  
Victoria Peck ◽  
...  

In aquatic environments, plastic pollution occurs concomitantly with anthropogenic climate stressors such as ocean acidification. Within the Southern Ocean, Antarctic krill (Euphausia Superba) support many marine predators and play a key role in the biogeochemical cycle. Ocean acidification and plastic pollution have been acknowledged to hinder Antarctic krill development and physiology in singularity, however potential multi-stressor effects of plastic particulates coupled with ocean acidification are unexplored. Furthermore, Antarctic krill may be especially vulnerable to plastic pollution due to their close association with sea-ice, a known plastic sink. Here, we investigate the behaviour of nanoplastic [spherical, aminated (NH2), and yellow-green fluorescent polystyrene nanoparticles] in Antarctic seawater and explore the single and combined effects of nanoplastic (160 nm radius, at a concentration of 2.5 μg ml–1) and ocean acidification (pCO2 ∼900, pHT 7.7) on the embryonic development of Antarctic krill. Gravid female krill were collected in the Atlantic sector of the Southern Ocean (North Scotia Sea). Produced eggs were incubated at 0.5 °C in four treatments (control, nanoplastic, ocean acidification and the multi-stressor scenario of nanoplastic presence, and ocean acidification) and their embryonic development after 6 days, at the incubation endpoint, was determined. We observed that negatively charged nanoplastic particles suspended in seawater from the Scotia Sea aggregated to sizes exceeding the nanoscale after 24 h (1054.13 ± 53.49 nm). Further, we found that the proportion of embryos developing through the early stages to reach at least the limb bud stage was highest in the control treatment (21.84%) and lowest in the multi-stressor treatment (13.17%). Since the biological thresholds to any stressors can be altered by the presence of additional stressors, we propose that future nanoplastic ecotoxicology studies should consider the changing global ocean under future climate scenarios for assessments of their impact and highlight that determining the behaviour of nanoplastic particles used in incubation studies is critical to determining their toxicity.


Sign in / Sign up

Export Citation Format

Share Document