Association of fasting glucagon-like peptide-1 with oxidative stress and subclinical atherosclerosis in type 2 diabetes

2019 ◽  
Vol 13 (2) ◽  
pp. 1077-1080 ◽  
Author(s):  
Hesham Alharby ◽  
Talaat Abdelati ◽  
Mostafa Rizk ◽  
Eman Youssef ◽  
Noha Gaber ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suvanjaa Sivalingam ◽  
Emil List Larsen ◽  
Daniel H. van Raalte ◽  
Marcel H. A. Muskiet ◽  
Mark M. Smits ◽  
...  

AbstractGlucagon-like peptide 1 receptor agonists have shown cardioprotective effects which have been suggested to be mediated through inhibition of oxidative stress. We investigated the effect of treatment with a glucagon-like peptide 1 receptor agonist (liraglutide) on oxidative stress measured as urinary nucleic acid oxidation in persons with type 2 diabetes. Post-hoc analysis of two independent, randomised, placebo-controlled and double-blinded clinical trials. In a cross-over study where persons with type 2 diabetes and microalbuminuria (LIRALBU, n = 32) received liraglutide (1.8 mg/day) or placebo for 12 weeks in random order, separated by 4 weeks of wash-out. In a parallel-grouped study where obese persons with type 2 diabetes (SAFEGUARD, n = 56) received liraglutide (1.8 mg/day), sitagliptin (100 mg/day) or placebo for 12 weeks. Endpoints were changes in the urinary markers of DNA oxidation (8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG)) and RNA oxidation [8-oxo-7,8-dihydroguanosine (8-oxoGuo)]. In LIRALBU, we observed no significant differences between treatment periods in urinary excretion of 8-oxodG [0.028 (standard error (SE): 0.17] nmol/mmol creatinine, p = 0.87) or of 8-oxoGuo [0.12 (0.12) nmol/mmol creatinine, p = 0.31]. In SAFEGUARD, excretion of 8-oxodG was not changed in the liraglutide group [2.8 (− 8.51; 15.49) %, p = 0.62] but a significant decline was demonstrated in the placebo group [12.6 (− 21.3; 3.1) %, p = 0.02], resulting in a relative increase in the liraglutide group compared to placebo (0.16 nmol/mmol creatinine, SE 0.07, p = 0.02). Treatment with sitagliptin compared to placebo demonstrated no significant difference (0.07 (0.07) nmol/mmol creatinine, p = 0.34). Nor were any significant differences for urinary excretion of 8-oxoGuo liraglutide vs placebo [0.09 (SE: 0.07) nmol/mmol creatinine, p = 0.19] or sitagliptin vs placebo [0.07 (SE: 0.07) nmol/mmol creatinine, p = 0.35] observed. This post-hoc analysis could not demonstrate a beneficial effect of 12 weeks of treatment with liraglutide or sitagliptin on oxidatively generated modifications of nucleic acid in persons with type 2 diabetes.


2013 ◽  
Vol 305 (3) ◽  
pp. H295-H304 ◽  
Author(s):  
Akio Monji ◽  
Toko Mitsui ◽  
Yasuko K. Bando ◽  
Morihiko Aoyama ◽  
Toshimasa Shigeta ◽  
...  

Glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) is a remedy for type 2 diabetes mellitus (T2DM). Ex-4 ameliorates cardiac dysfunction induced by myocardial infarction in preclinical and clinical settings. However, it remains unclear whether Ex-4 may modulate diabetic cardiomyopathy. We tested the impact of Ex-4 on two types of diabetic cardiomyopathy models, genetic (KK) and acquired T2DM induced by high-fat diet [diet-induced obesity (DIO)], to clarify whether Ex-4 may combat independently of etiology. Each type of mice was divided into Ex-4 (24 nmol·kg−1·day−1 for 40 days; KK-ex4 and DIO-ex4) and vehicle (KK-v and DIO-v) groups. Ex-4 ameliorated systemic and cardiac insulin resistance and dyslipidemia in both T2DM models. T2DM mice exhibited systolic (DIO-v) and diastolic (DIO-v and KK-v) left ventricular dysfunctions, which were restored by Ex-4 with reduction in left ventricular hypertrophy. DIO-v and KK-v exhibited increased myocardial fibrosis and steatosis (lipid accumulation), in which were observed cardiac mitochondrial remodeling and enhanced mitochondrial oxidative damage. Ex-4 treatment reversed these cardiac remodeling and oxidative stress. Cytokine array revealed that Ex-4-sensitive inflammatory cytokines were ICAM-1 and macrophage colony-stimulating factor. Ex-4 ameliorated myocardial oxidative stress via suppression of NADPH oxidase 4 with concomitant elevation of antioxidants (SOD-1 and glutathione peroxidase). In conclusion, GLP-1R agonism reverses cardiac remodeling and dysfunction observed in T2DM via normalizing imbalance of lipid metabolism and related inflammation/oxidative stress.


2015 ◽  
Vol 2 (e1) ◽  
pp. 008-008
Author(s):  
Momoko Isono ◽  
Kazuya Fujihara ◽  
Shoko Furukawa ◽  
Ryo Kumagai ◽  
Hiroaki Yagyu

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1096-P
Author(s):  
RUTH E. BROWN ◽  
ALEXANDER ABITBOL ◽  
HARPREET S. BAJAJ ◽  
HASNAIN KHANDWALA ◽  
RONALD GOLDENBERG ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1963-P
Author(s):  
SIGRID BERGMANN ◽  
NATASHA C. BERGMANN ◽  
LÆRKE S. GASBJERG ◽  
JENS J. HOLST ◽  
TINA VILSBØLL ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1019-P
Author(s):  
YUKI FUJITA ◽  
SODAI KUBOTA ◽  
HITOSHI KUWATA ◽  
DAISUKE YABE ◽  
YOSHIYUKI HAMAMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document