Amphiphilic axially modified cationic indium-porphyrins linked to hydrophilic magnetic nanoparticles for photodynamic antimicrobial chemotherapy against gram-negative strain; Escherichia coli

2021 ◽  
pp. 109262
Author(s):  
L. Collen Makola ◽  
Sithi Mgidlana ◽  
Tebello Nyokong
RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 40734-40744 ◽  
Author(s):  
Min Li ◽  
Bingjie Mai ◽  
Ao Wang ◽  
Yiru Gao ◽  
Xiaobing Wang ◽  
...  

Cationic phthalocyanines (Pcs) combine with photodynamic antimicrobial chemotherapy (PACT) presents excellent antibacterial activity to Gram-negative bacteriaE. coli.


Author(s):  
YOJANA Y. PATIL ◽  
VAISHNVI B. SUTAR ◽  
ARPITA P. TIWARI

Objective: The present study was aimed at the biological synthesis of magnetic iron nanoparticles by using the plant extract of Tridax procumbens and also to study their antimicrobial property against gram-negative bacteria (Escherichia coli). Methods: The synthesis of magnetic iron nanoparticles was carried out by the co-precipitation method using biological methods like plant extract as reducing agent and capping agents are biocompatible and non-hazardous. These nanoparticles were characterized by UV-Visible spectroscopy, XRD (X-Ray Diffraction), and SEM (Scanning Electron Microscope). As well as antibacterial activity of the nanoparticles was carried out by agar well diffusion method and Most Probable Number (MPN) method against gram-negative E. coli (Escherichia coli) bacteria. Results: The average crystallite size of Magnetic Nanoparticles (MNPs) was found to be 72 nm by X-ray diffraction. The optical absorption band at wavelengths of 240 nm and 402 nm was obtained from the UV Visible spectrum. Spherical shape morphology was observed in SEM studies. The antibacterial assay clearly expressed that E. coli showed a maximum zone of inhibition (15±0.15 mm) at 2 mg/ml and 1 mg/ml concentration was found for Magnetic Nanoparticles. In the Most Probable Number (MPN) test it is seen that the bacterial count is reduced after adding synthesized NPs into the water sample. Conclusion: The results of the present study conclude that the Magnetic Nanoparticles synthesized using Tridax procumbens leaf extracts is found to be stable and show good antibacterial activity against gram-negative (Escherichia coli) bacteria.


2016 ◽  
Vol 40 (3) ◽  
pp. 2710-2721 ◽  
Author(s):  
Olawale L. Osifeko ◽  
Imran Uddin ◽  
Philani N. Mashazi ◽  
Tebello Nyokong

An aminophenoxy substituent indium phthalocyanine was linked to magnetic nanoparticles and the conjugate showed less activity than the Pc alone towards photodynamic antimicrobial chemotherapy ofE. coli.


Author(s):  
Rubal C Das ◽  
Rajib Banik ◽  
Robiul Hasan Bhuiyan ◽  
Md Golam Kabir

Macrophomina phaseolina is one of the pathogenic organisms of gummosis disease of orange tree (Citrus reticulata). The pathogen was identified from the observation of their colony size, shape, colour, mycelium, conidiophore, conidia, hyaline, spore, and appressoria in the PDA culture. The crude chloroform extracts from the organism showed antibacterial activity against a number of Gram positive and Gram-negative bacteria. The crude chloroform extract also showed promising antifungal activity against three species of the genus Aspergillus. The minimum inhibitory concentration (MIC) of the crude chloroform extract from M. phaseolina against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Shigella sonnie were 128 ?gm, 256 ?gm, 128 ?gm and 64 ?gm/ml respectively. The LD50 (lethal dose) values of the cytotoxicity assay over brine shrimp of the crude chloroform extract from M. phaseolina was found to be 51.79 ?gm/ml. DOI: http://dx.doi.org/10.3329/cujbs.v5i1.13378 The Chittagong Univ. J. B. Sci.,Vol. 5(1 &2):125-133, 2010


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


Author(s):  
Gemedo Misha ◽  
Legese Chelkeba ◽  
Tsegaye Melaku

Abstract Background Globally, surgical site infections are the most reported healthcare-associated infection and common surgical complication. In developing countries such as Ethiopia, there is a paucity of published reports on the microbiologic profile and resistance patterns of an isolates. Objective This study aimed at assessing the bacterial profile and antimicrobial susceptibility patterns of isolates among patients diagnosed with surgical site infection at Jimma Medical Center in Ethiopia. Methods A prospective cohort study was employed among adult patients who underwent either elective or emergency surgical procedures. All the eligible patients were followed for 30 days for the occurrence of surgical site infection (SSI). From those who developed SSI, infected wound specimens were collected and studied bacteriologically. Results Of 251 study participants, 126 (50.2%) of them were females. The mean ± SD age of the patients was 38 ± 16.30 years. The overall postoperative surgical site infection rate was 21.1% and of these 71.7% (38/53) were culture positive. On gram stain analysis, 78% of them were Gram-negative, 11.5% were Gram-positive and 10.5% were a mixture of two microbial growths. Escherichia coli accounted for (21.43%), followed by Pseudomonas aeruginosa (19.05%), Proteus species (spp.) 14.29%), Staphylococcus aureus (11.90%), Klebsiella species (11.90%), Citrobacter spp. (9.5%), streptococcal spp. (7.14%), Coagulase-negative S. aureus (CoNS) (2.38%) Conclusion Gram-negative bacteria were the most dominant isolates from surgical sites in the study area. Among the Gram-negative bacilli, Escherichia coli were the most common bacteria causing surgical site infection. As there is high antibiotic resistance observed in the current study, it is necessary for routine microbial analysis of samples and their antibiogram.


2021 ◽  
Vol 9 (3) ◽  
pp. 503
Author(s):  
Michael Bording-Jorgensen ◽  
Hannah Tyrrell ◽  
Colin Lloyd ◽  
Linda Chui

Acute gastroenteritis caused by Shiga toxin-producing Escherichia coli (STEC) affects more than 4 million individuals in Canada. Diagnostic laboratories are shifting towards culture-independent diagnostic testing; however, recovery of STEC remains an important aspect of surveillance programs. The objective of this study was to compare common broth media used for the enrichment of STEC. Clinical isolates including O157:H7 as well as non-O157 serotypes were cultured in tryptic soy (TSB), MacConkey (Mac), and Gram-negative (GN) broths and growth was compared using culture on sheep’s blood agar and real-time PCR (qPCR). In addition, a selection of the same isolates was spiked into negative stool and enriched in the same three broths, which were then evaluated using culture on CHROMagarTM STEC agar and qPCR. TSB was found to provide the optimal enrichment for growth of isolates with and without stool. The results from this study suggest that diagnostic laboratories may benefit from enriching STEC samples in TSB as a first line enrichment instead of GN or Mac.


Sign in / Sign up

Export Citation Format

Share Document