Planar optode: A two-dimensional imaging technique for studying spatial-temporal dynamics of solutes in sediment and soil

2019 ◽  
Vol 197 ◽  
pp. 102916 ◽  
Author(s):  
Cai Li ◽  
Shiming Ding ◽  
Liyuan Yang ◽  
Qingzhi Zhu ◽  
Musong Chen ◽  
...  
2005 ◽  
Vol 295-296 ◽  
pp. 477-482
Author(s):  
K.W. Wang ◽  
Z.J. Cai ◽  
Li Jiang Zeng

A two-dimensional surface profile imaging technique based on heterodyne interferometer is proposed. A piezo translator vibrated grating is used to generate a heterodyne signal. A high speed CCD camera is used to extract the interference signal using a five step method. The uncertainty in the displacement measurement is approximately 0.035 µm within a measurement range of 1.7 µm, confirming the two dimensional heterodyne interferometer is valid for measuring the surface profile. The method is also available for low coherence heterodyne interferometer due to the optical frequency shifts caused by the vibration of grating independent on the wavelength.


1999 ◽  
Vol 395 ◽  
pp. 253-270 ◽  
Author(s):  
Y.-J. CHEN ◽  
S. H. DAVIS

A steady, two-dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behaviour of the moving front is described by a slow, spatial–temporal dynamics obtained through a multiple-scale analysis. The resulting system has a parametric-excitation structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection in general stabilizes two-dimensional disturbances, but destabilizes three-dimensional disturbances. When the flow is weak, the morphological instability is incommensurate with the flow wavelength, but as the flow gets stronger, the instability becomes quantized and forced to fit into the flow box. At large flow strength the instability is localized, confined in narrow envelopes. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundaries and asymptotics are obtained by a WKB analysis. The weakly nonlinear interaction is delivered through the Lyapunov–Schmidt method.


Measurement ◽  
2018 ◽  
Vol 119 ◽  
pp. 18-27 ◽  
Author(s):  
Feipeng Zhu ◽  
Pengxiang Bai ◽  
Yan Gong ◽  
Dong Lei ◽  
Xiaoyuan He

2006 ◽  
Vol 37 (1) ◽  
pp. 1146
Author(s):  
Seong-Woo Cho ◽  
Jae-Hyeung Park ◽  
Yunhee Kim ◽  
Heejin Choi ◽  
Joohwan Kim ◽  
...  

Author(s):  
Matvey Kulakov ◽  
E.Ya. Frisman

The paper proposed a mathematical model for spatio-temporal dynamics of two-age populations coupled by migration living on a two-dimensional areal. The model equation is a system of nonlocal coupled two-dimensional maps. We considered cases when populations are coupled in a certain neighborhood of different form: circle, square or rhombus. Special attention is paid to the situation when the intensity of the migrants flow between the territories decreases with increasing distance between them. For this model we study the conditions for the formation of groups of synchronous populations or clusters that form, in space, typical structures like spots or stripes mixed with solitary states. It is shown that the dynamics, in time, of different clusters may differ significantly and may not be coherent and correspond to several simultaneous multistable regimes or potential states of the local population. Such spatio-temporal regimes are forced and are caused by impacts or perturbations on a single or several populations when their number falls into the attraction basin of another regime. With strong coupling, such clusters are rare and are represented by single outbursts or solitary states. However, the decrease in the coupling strength leads to the fact that these outbursts cause oscillations of their neighbors, and in their neighborhood a cluster of solitary states is formed which is surrounded by subpopulations with a different type of dynamics. It was found that the interaction of different type of clusters leads to the formation of a large number of groups with transitional dynamics that were not described for local populations.


Sign in / Sign up

Export Citation Format

Share Document