scholarly journals Arthroscopic Coracoclavicular Fixation Technique Using Multiple All-Suture Anchors

2019 ◽  
Vol 8 (4) ◽  
pp. e423-e427
Author(s):  
Jeung Yeol Jeong ◽  
Yon-Sik Yoo ◽  
Seung-Jin Lee ◽  
Wooyoung Im
2019 ◽  
Vol 7 (10) ◽  
pp. 232596711987627 ◽  
Author(s):  
Lucca Lacheta ◽  
Samuel I. Rosenberg ◽  
Alex W. Brady ◽  
Grant J. Dornan ◽  
Peter J. Millett

Background: Subpectoral biceps tenodesis can be performed with cortical fixation using different repair techniques. The goal of this technique is to obtain a strong and stable reduction of biceps tendon in an anatomic position. Purpose/Hypothesis: The purpose of this study was to compare (1) displacement during cyclic loading, (2) ultimate load, (3) construct stiffness, and (4) failure mode of the biceps tenodesis fixation methods using onlay techniques with an all-suture anchor versus an intramedullary unicortical button. It was hypothesized that fixation with all-suture anchors using a Krackow stitch would exhibit biomechanical characteristics similar to those exhibited by fixation with unicortical buttons. Study Design: Controlled laboratory study. Methods: Ten pairs of fresh-frozen cadaveric shoulders (N = 20) were dissected to the humerus, leaving the biceps tendon-muscle unit intact for testing. A standardized subpectoral biceps cortical (onlay) tenodesis was performed using either an all-suture anchor or a unicortical button. The biceps tendon was initially cycled from 5 to 70 N at a frequency of 1.5 Hz. The force on the tendon was then returned to 5 N, and the tendon was pulled until ultimate failure of the construct. Displacement during cyclic loading, ultimate failure load, stiffness, and failure modes were assessed. Results: Cyclic loading resulted in a mean displacement of 12.5 ± 2.5 mm for all-suture anchor fixation and 29.2 ± 9.4 mm for unicortical button fixation ( P = .005). One all-suture anchor fixation and 2 unicortical button fixations failed during cyclic loading. The mean ultimate failure load was 170.4 ± 68.8 N for the all-suture anchor group and 125.4 ± 44.6 N for the unicortical button group ( P = .074), with stiffness 59.3 ± 11.6 N/mm and 48.6 ± 6.8 N/mm ( P = .091), respectively. For the unicortical button, failure occurred by suture tearing through tendon in 100% of the specimens. For the all-suture anchor, failure occurred by suture tearing through tendon in 56% and knot failure in 44% of the specimens. Conclusion: The all-suture anchor fixation using a Krackow stitch for subpectoral biceps tenodesis provided ultimate load and stiffness similar to unicortical button fixation using a nonlocking whipstitch. The all-suture anchor fixation technique was shown to be superior in terms of displacement during cyclic loading when compared with the unicortical button fixation technique. However, the results of this study help to show that the fixation method used on the humeral side is less implicative of the overall construct strength than stitch location and technique, as the biceps tendon tissue and stitch configuration seem to be the limiting factor in subpectoral onlay tenodesis techniques. Clinical Relevance: All-suture anchors have a smaller diameter than traditional suture anchors, can be inserted through curved guides, and preserve humeral bone stock without compromising postoperative imaging. This study supports use of the all-suture anchor fixation technique for subpectoral biceps tenodesis, with high biomechanical fixation strength and low displacement, as an alternative to the subpectoral onlay biceps tenodesis technique.


Author(s):  
M. A. Hayat

Potassium permanganate has been successfully employed to study membranous structures such as endoplasmic reticulum, Golgi, plastids, plasma membrane and myelin sheath. Since KMnO4 is a strong oxidizing agent, deposition of manganese or its oxides account for some of the observed contrast in the lipoprotein membranes, but a good deal of it is due to the removal of background proteins either by dehydration agents or by volatalization under the electron beam. Tissues fixed with KMnO4 exhibit somewhat granular structure because of the deposition of large clusters of stain molecules. The gross arrangement of membranes can also be modified. Since the aim of a good fixation technique is to preserve satisfactorily the cell as a whole and not the best preservation of only a small part of it, a combination of a mixture of glutaraldehyde and acrolein to obtain general preservation and KMnO4 to enhance contrast was employed to fix plant embryos, green algae and fungi.


1969 ◽  
Vol 62 (1_Suppl) ◽  
pp. S13-S30 ◽  
Author(s):  
W. R. Butt

ABSTRACT Several chemical differences between FSH, LH and HCG have been reported: thus LH and HCG are richer in proline than FSH and FSH and HCG contain more N-acetyl neuraminic acid than LH. Sub-units of LH are formed by treatment with urea, guanidine or acid. HCG also may contain two sub-units. The sub-units from LH are biologically inert but retain their immunological activity: biological activity is restored when the sub-units are incubated together. There is much evidence from chemical and enzymic reactions that antigenic groups are distinct from those parts of the molecule essential for biological activity. N-acetyl neuraminic acid and probably other carbohydrates in FSH and HCG are not involved in immunological activity but are necessary for biological activity. Histidine, methionine and possibly cysteine appear to be essential for biological but not immunological activity of FSH, while tryptophan and possibly tyrosine are not essential for either. A few highly specific antisera to gonadotrophins have been prepared in rabbits and guinea pigs to crude antigens: there is no evidence that purified antigens are more likely to produce specific antisera. Differences in the immunological reactivities of urinary compared with pituitary gonadotrophins have been observed both by radioimmunoassay and by the complement fixation technique. The latter may be particularly useful for detecting structural differences in the hormones.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Puripun Jirangkul ◽  
Arkaphat Kosiyatrakul

Abstract Background Modified tension band fixation has become commonly used for transverse patella fractures. The conventional stainless steel wire provides sufficient stability but may be associated with complications. Objective The study aimed to evaluate the effectiveness of a new modified tension band fixation technique for transverse patella fractures using a nonabsorbable suture. Material and methods We present the result of a prospective series using a nonabsorbable suture (FiberWire) for transverse patella fractures. The mean follow-up period totaled 12 months. A total of 16 patients were evaluated by radiographic and clinical review. The postoperative clinical evaluation employed Lysholm and Böstman scores. Result All clinical results on follow-up were good to excellent. Minimal intra-articular joint stepping and further fracture displacement were recorded. No patient needed re-operation, and functional outcomes of the knee were satisfactory. No significant differences were found between the injured and contralateral knee range of motion. No symptomatic implants and skin complications were noted, and all fractures were completed heal within 15 weeks. Conclusion FiberWire provided sufficient stability and reduced postoperative complications. The results proved appropriate, and the technique has merit, as it obviates the need for re-operation.


2021 ◽  
Vol 9 (3) ◽  
pp. 232596712198928
Author(s):  
Heath P. Gould ◽  
Nicholas R. Delaney ◽  
Brent G. Parks ◽  
Roshan T. Melvani ◽  
Richard Y. Hinton

Background: Femoral-sided graft fixation in medial patellofemoral ligament (MPFL) reconstruction is commonly performed using an interference screw (IS). However, the IS method is associated with several clinical disadvantages that may be ameliorated by the use of suture anchors (SAs) for femoral fixation. Purpose: To compare the load to failure and stiffness of SAs versus an IS for the femoral fixation of a semitendinosus autograft in MPFL reconstruction. Study Design: Controlled laboratory study. Methods: Based on a priori power analysis, a total of 6 matched pairs of cadaveric knees were included. Specimens in each pair were randomly assigned to receive either SA or IS fixation. After an appropriate reconstruction procedure, the looped end of the MPFL graft was pulled laterally at a rate of 6 mm/s until construct failure. The best-fit slope of the load-displacement curve was then used to calculate the stiffness (N/mm) in a post hoc fashion. A paired t test was used to compare the mean load to failure and the mean stiffness between groups. Results: No significant difference in load to failure was observed between the IS and the SA fixation groups (294.0 ± 61.1 vs 250.0 ± 55.9; P = .352), although the mean stiffness was significantly higher in IS specimens (34.5 ± 9.6 vs 14.7 ± 1.2; P = .004). All IS reconstructions failed by graft pullout from the femoral tunnel, whereas 5 of the 6 SA reconstructions failed by anchor pullout. Conclusion: In this biomechanical study using a cadaveric model of MPFL reconstruction, SA femoral fixation was not significantly different from IS fixation in terms of load to failure. The mean load-to-failure values for both reconstruction techniques were greater than the literature-reported values for the native MPFL. Clinical Relevance: These results suggest that SAs are a biomechanically viable alternative for femoral-sided graft fixation in MPFL reconstruction.


2021 ◽  
pp. 107110072110335
Author(s):  
Sarah Ettinger ◽  
Lisa-Christin Hemmersbach ◽  
Michael Schwarze ◽  
Christina Stukenborg-Colsman ◽  
Daiwei Yao ◽  
...  

Background: Tarsometatarsal (TMT) arthrodesis is a common operative procedure for end-stage arthritis of the TMT joints. To date, there is no consensus on the best fixation technique for TMT arthrodesis and which joints should be included. Methods: Thirty fresh-frozen feet were divided into one group (15 feet) in which TMT joints I-III were fused with a lag screw and locking plate and a second group (15 feet) in which TMT joints I-III were fused with 2 crossing lag screws. The arthrodesis was performed stepwise with evaluation of mobility between the metatarsal and cuneiform bones after every application or removal of a lag screw or locking plate. Results: Isolated lag-screw arthrodesis of the TMT I-III joints led to significantly increased stability in every joint ( P < .05). Additional application of a locking plate caused further stability in every TMT joint ( P < .05). An additional crossed lag screw did not significantly increase rigidity of the TMT II and III joints ( P > .05). An IM screw did not influence the stability of the fused TMT joints. For TMT III arthrodesis, lag-screw and locking plate constructs were superior to crossed lag-screw fixation ( P < .05). TMT I fusion does not support stability after TMT II and III arthrodesis. Conclusion: Each fixation technique provided sufficient stabilization of the TMT joints. Use of a lag screw plus locking plate might be superior to crossed screw fixation. An additional TMT I and/or III arthrodesis did not increase stability of an isolated TMT II arthrodesis. Clinical Relevance: We report the first biomechanical evaluation of TMT I-III arthrodesis. Our results may help surgeons to choose among osteosynthesis techniques and which joints to include in performing arthrodesis of TMT I-III joints.


2012 ◽  
Vol 22 (2) ◽  
pp. 260-267 ◽  
Author(s):  
Bin Ni ◽  
Xiang Guo ◽  
Ning Xie ◽  
Songkai Li ◽  
Fengjing Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document