scholarly journals Evaluation of Different Parameters of Humoral and Cellular Immune Responses in HIV Serodiscordant Heterosexual Couples: Humoral Response Potentially Implicated in Modulating Transmission Rates

EBioMedicine ◽  
2017 ◽  
Vol 26 ◽  
pp. 25-37 ◽  
Author(s):  
María Julia Ruiz ◽  
Jimena Salido ◽  
Lorena Abusamra ◽  
Yanina Ghiglione ◽  
Cintia Cevallos ◽  
...  
eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Helen Parry ◽  
Gokhan Tut ◽  
Rachel Bruton ◽  
Sian Faustini ◽  
Christine Stephens ◽  
...  

Age is the major risk factor for mortality after SARS-CoV-2 infection and older people have received priority consideration for COVID-19 vaccination. However, vaccine responses are often suboptimal in this age group and few people over the age of 80 years were included in vaccine registration trials. We determined the serological and cellular response to spike protein in 100 people aged 80–96 years at 2 weeks after the second vaccination with the Pfizer BNT162b2 mRNA vaccine. Antibody responses were seen in every donor with high titers in 98%. Spike-specific cellular immune responses were detectable in only 63% and correlated with humoral response. Previous SARS-CoV-2 infection substantially increased antibody responses after one vaccine and antibody and cellular responses remained 28-fold and 3-fold higher, respectively, after dual vaccination. Post-vaccine sera mediated strong neutralization of live Victoria infection and although neutralization titers were reduced 14-fold against the P.1 variant first discovered in Brazil they remained largely effective. These data demonstrate that the mRNA vaccine platform delivers strong humoral immunity in people up to 96 years of age and retains broad efficacy against the P.1 variant of concern.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1350
Author(s):  
Mariana Rivera-Patron ◽  
María Moreno ◽  
Mariana Baz ◽  
Paulo M. Roehe ◽  
Samuel P. Cibulski ◽  
...  

Vaccination is the most effective public health intervention to prevent influenza infections, which are responsible for an important burden of respiratory illnesses and deaths each year. Currently, licensed influenza vaccines are mostly split inactivated, although in order to achieve higher efficacy rates, some influenza vaccines contain adjuvants. Although split-inactivated vaccines induce mostly humoral responses, tailoring mucosal and cellular immune responses is crucial for preventing influenza infections. Quillaja brasiliensis saponin-based adjuvants, including ISCOM-like nanoparticles formulated with the QB-90 saponin fraction (IQB90), have been studied in preclinical models for more than a decade and have been demonstrated to induce strong humoral and cellular immune responses towards several viral antigens. Herein, we demonstrate that a split-inactivated IQB90 adjuvanted influenza vaccine triggered a protective immune response, stronger than that induced by a commercial unadjuvanted vaccine, when applied either by the subcutaneous or the intranasal route. Moreover, we reveal that this novel adjuvant confers up to a ten-fold dose-sparing effect, which could be crucial for pandemic preparedness. Last but not least, we assessed the role of caspase-1/11 in the generation of the immune response triggered by the IQB90 adjuvanted influenza vaccine in a mouse model and found that the cellular-mediated immune response triggered by the IQB90-Flu relies, at least in part, on a mechanism involving the casp-1/11 pathway but not the humoral response elicited by this formulation.


2015 ◽  
Vol 23 (01) ◽  
pp. 131-163 ◽  
Author(s):  
HYUN MO YANG

A mathematical model is developed to assess humoral and cellular immune responses against Trypanosoma cruzi infection. Analysis of the model shows a unique non-trivial equilibrium, which is locally asymptotically stable, except in the case of a strong cellular response. When the proliferation of the activated CD8 T cells is increased, this equilibrium becomes unstable and a limit cycle appears. However, this behavior can be avoided by increasing the action of the humoral response. Therefore, unbalanced humoral and cellular responses can be responsible for long asymptomatic period, and the control of Trypanosoma cruzi infection is a consequence of well coordinated action of both humoral and cellular responses.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
B. Espinoza ◽  
T. Rico ◽  
S. Sosa ◽  
E. Oaxaca ◽  
A. Vizcaino-Castillo ◽  
...  

It is has been shown that the majority ofT. cruzistrains isolated from Mexico belong to theT. cruziI (TCI). The immune response produced in response to MexicanT. cruziI strains has not been well characterized. In this study, two MexicanT. cruziI strains were used to infect Balb/c mice. The Queretaro (TBAR/MX/0000/Queretaro)(Qro) strain resulted in 100% mortality. In contrast, no mortality was observed in mice infected with the Ninoa (MHOM/MX/1994/Ninoa) strain. Both strains produced extended lymphocyte infiltrates in cardiac tissue. Ninoa infection induced a diverse humoral response with a higher variety of immunoglobulin isotypes than were found in Qro-infected mice. Also, a stronger inflammatory TH1 response, represented by IL-12p40, IFNγ, RANTES, MIG, MIP-1β, and MCP-1 production was observed in Qro-infected mice when compared with Ninoa-infected mice. We propose that an exacerbated TH1 immune response is a likely cause of pathological damage observed in cardiac tissue and the primary cause of death in Qro-infected mice.


Sign in / Sign up

Export Citation Format

Share Document