scholarly journals Changes to the sebum lipidome upon COVID-19 infection observed via rapid sampling from the skin

2021 ◽  
pp. 100786
Author(s):  
Matt Spick ◽  
Katherine Longman ◽  
Cecile Frampas ◽  
Holly Lewis ◽  
Catia Costa ◽  
...  
Keyword(s):  
1998 ◽  
Vol 32 (4) ◽  
pp. 364-368 ◽  
Author(s):  
Annelise Hem ◽  
Adrian J. Smith ◽  
Per Solberg

A method is described for blood collection from the lateral saphenous vein. This enables rapid sampling, which if necessary can be repeated from the same site without a need for new puncture wounds. The method is a humane and practical alternative to cardiac and retro-orbital puncture, in species where venepuncture has traditionally been regarded as problematic.


2020 ◽  
pp. 1-7
Author(s):  
Sumit Kumar Gupta ◽  

Nanotechnology is new frontiers of this century. The world is facing great challenges in meeting rising demands for basic commodities(e.g., food, water and energy), finished goods (e.g., cellphones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth’s global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. In recent years there has been a rapid increase in nanotechnology in the fields of medicine and more specifically in targeted drug delivery. Opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and hemistry. Smart delivery of nutrients, bio-separation of proteins, rapid sampling of biological and chemical contaminants, and nano encapsulation of nutraceuticals are some of the emerging topics of nanotechnology for food and agriculture. Nanotechnology is helping to considerably improve, even revolutionize, many technology and Industry sectors: information technology, energy, environmental science, medicine, homeland security, food safety, and transportation, among many others. Today’s nanotechnology harnesses current progress in chemistry, physics, materials science, and biotechnology to create novel materials that have unique properties because their structures are determined on the nanometer scale. This paper summarizes the various applications of nanotechnology in recent decades Nanotechnology is one of the leading scientific fields today since it combines knowledge from the fields of Physics, Chemistry, Biology, Medicine, Informatics, and Engineering. It is an emerging technological field with great potential to lead in great breakthroughs that can be applied in real life. Novel Nano and biomaterials, and Nano devices are fabricated and controlled by nanotechnology tools and techniques, which investigate and tune the properties, responses, and functions of living and non-living matter, at sizes below100 nm. The application and use of Nano materials in electronic and mechanical devices, in optical and magnetic components, quantum computing, tissue engineering, and other biotechnologies, with smallest features, widths well below 100 nm, are the economically most important parts of the nanotechnology nowadays and presumably in the near future. The number of Nano products is rapidly growing since more and more Nano engineered materials are reaching the global market the continuous revolution in nanotechnology will result in the fabrication of nanomaterial with properties and functionalities which are going to have positive changes in the lives of our citizens, be it in health, environment, electronics or any other field. In the energy generation challenge where the conventional fuel resources cannot remain the dominant energy source, taking into account the increasing consumption demand and the CO2 .Emissions alternative renewable energy sources based on new technologies have to be promoted. Innovative solar cell technologies that utilize nanostructured materials and composite systems such as organic photovoltaic offer great technological potential due to their attractive properties such as the potential of large-scale and low-cost roll-to-roll manufacturing processes


2021 ◽  
Vol 193 (12) ◽  
Author(s):  
Nicholas Metherall ◽  
Elisabeth Holland ◽  
Sara Beavis ◽  
Adi Mere Dralolo Vinaka

AbstractWithin Pacific Small Island Developing States (Pacific SIDS), the ridge-to-reef (R2R) approach has emerged as a framework for monitoring river connectivity between terrestrial and marine ecosystems. The study measured water quality, including pH, over 88.40 km of the Ba River in Fiji. The sampling design focused on measuring spatio-temporal variability in pH throughout the sugarcane season with three rapid sampling periods (RSP1, 2 & 3) along the Ba River, together with continuous measurement of temperature and pH using stationary data loggers at two locations upstream and downstream of the sugar mill. Spatial variability in pH and water quality was characterised before (RSP1 and RSP2) and during (RSP3) the sugarcane season. Mean pH measured before the sugarcane crushing season for RSP1 and RSP2 were 8.16 (± 0.49) and 8.20 (± 0.61) respectively. During the sugarcane crushing season (RSP3), mean pH declined by 3.06 units to 6.94 within 42 m downstream of the sugar mill (P ≤ 0.001). The 3.06 unit decline in pH for RSP3 exceeded both the mean diurnal variation in pH of 0.39 and mean seasonal variation in pH of 2.01. This decline in pH could be a potential source of acidification to downstream coastal ecosystems with implications for coral reefs, biodiversity and fishery livelihoods.


Author(s):  
Ying He ◽  
Jianing Wang ◽  
Fan Wang ◽  
Toshiyuki Hibiya

AbstractThe Mindanao Current (MC) bridges the North Pacific low-latitude western boundary current system region and the Indonesian Seas by supplying the North Pacific waters to the Indonesian Throughflow. Although the previous study speculated that the diapycnal mixing along the MC might be strong on the basis of the water mass analysis of the gridded climatologic dataset, the real spatial distribution of diapycnal mixing along the MC has remained to be clarified. We tackle this question here by applying a finescale parameterization to temperature and salinity profiles obtained using two rapid-sampling profiling Argo floats that drifted along the MC. The western boundary (WB) region close to the Mindanao Islands and the Sangihe Strait are the two mixing hotspots along the MC, with energy dissipation rate ε and diapycnal diffusivity Kρ enhanced up to ~ 10–6 W kg−1 and ~ 10–3 m2 s−1, respectively. Except for the above two mixing hotspots, the turbulent mixing along the MC is mostly weak, with ε and Kρ to be 10–11–10–9 W kg−1 and 10–6–10–5 m2 s−1, respectively. Strong mixing in the Sangihe Strait can be basically attributed to the existence of internal tides, whereas strong mixing in the WB region suggests the existence of internal lee waves. We also find that water mass transformation along the MC mainly occurs in the Sangihe Strait where the water masses are subjected to strong turbulent mixing during a long residence time.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 384 ◽  
Author(s):  
Zhiliang Zhang ◽  
Tiantian Si ◽  
Jun Liu ◽  
Guowei Zhou

The rapid sampling and efficient collection of target molecules from a real-world surface is fairly crucial for surface-enhanced Raman scattering (SERS) to detect trace pesticide residues in the environment and in agriculture fields. In this work, a versatile approach was exploited to fabricate a flexible SERS substrate for highly sensitive detection of carbaryl pesticides, using in-situ grown silver nanoparticles (AgNPs)on non-woven (NW) fabric surfaces based on mussel-inspired polydopamine (PDA) molecules. The obtained NW@PDA@AgNPs fabrics showed extremely sensitive and reproducible SERS signals toward crystal violet (CV) molecules, and the detection limit was as low as 1.0 × 10−12 M. More importantly, these NW@PDA@AgNPs fabrics could be directly utilized as flexible SERS substrates for the rapid extraction and detection of trace carbaryl pesticides from various fruit surfaces through a simple swabbing approach. It was identified that the detection limits of carbaryl residues from apple, orange, and banana surfaces were approximately decreased to 4.02 × 10−12, 6.04 × 10−12, and 5.03 × 10−12 g, respectively, demonstrating high sensitivity and superior reliability. These flexible substrates could not only drastically increase the collection efficiency from multifarious irregular-shaped matrices, but also greatly enhance analytical sensitivity and reliability for carbaryl pesticides. The fabricated flexible and multifunctional SERS substrates would have great potential to trace pesticide residue detection in the environment and bioscience fields.


1978 ◽  
Vol 77 (1) ◽  
pp. 134-147 ◽  
Author(s):  
RD Lang ◽  
JR Bronk

The spray-freeze-etching technique has been used to study energy-linked mitochondrial structural changes in rat liver mitochondria incubated in vitro. The technique involves spraying the suspension of mitochondria into liquid propane at -190 degrees C, and does not require the use of cryoprotectants or chemical fixatives. The results confirmed that freshly isolated mitochondria have a condensed matrix and that this expands at the expense of the outer compartment to give the orthodox configuration when the mitochondria are incubated in a K+ medium in the presence of substrate and phosphate. Addition of adenosine diphosphate (ADP) caused a rapid shrinkage of the matrix compartment, and the time-course and extent of this shrinkage has been measured quantitatively by coupling a rapid sampling device to the spray-freezing apparatus. These data show that for orthodox mitochondria the onset of phosphorylation is accompanied by a reduction of 30% in the matrix volume in 20's, and there is no evidence that the decrease in matrical volume affects the phosphorylation efficiency. These results suggest that natural ionophores in the mitochondrial inner membrane make it permeable enough to permit a rapid readjustment of matrix volume after the addition of ADP, and that the associated ion movement does not cause uncoupling of oxidative phosphorylation.


Author(s):  
Saswata Sankar Sarkar ◽  
Anoop Saxena ◽  
Nihav Dhawale ◽  
Jayant B. Udgaonkar ◽  
G. Krishnamoorthy

Sign in / Sign up

Export Citation Format

Share Document