scholarly journals Nutrient load compensation as a means of maintaining the good ecological status of surface waters

2021 ◽  
Vol 188 ◽  
pp. 107108
Author(s):  
Sanna Lötjönen ◽  
Markku Ollikainen ◽  
Niina Kotamäki ◽  
Markus Huttunen ◽  
Inese Huttunen
Author(s):  
Ruben Ladrera ◽  
Miguel Cañedo-Argüelles ◽  
Narcís Prat

Potash mining is significantly increasing the salt concentration of rivers and streams due to lixiviates coming from the mine tailings. In the present study, we have focused on the middle Llobregat basin (northeast Spain), where an important potash mining activity exists from the beginning of the XX century. Up to 50 million tonnes of saline waste have been disposed in the area, mainly composed of sodium chloride. We assessed the ecological status of streams adjacent to the mines by studying different physicochemical and hydromorphological variables, as well as aquatic macroinvertebrates. We found extraordinary high values of salinity in the studied streams, reaching conductivities up to 132.4 mS/cm. Salt-polluted streams were characterized by a deterioration of the riparian vegetation and the fluvial habitat. Both macroinvertebrate richness and abundance decreased with increasing salinity. In the most polluted stream only two families of macroinvertebrates were found: Ephydridae and Ceratopogonidae. According to the biotic indices IBMWP and IMMi-T, none of the sites met the requirements of the Water Framework Directive (WFD; i.e., good ecological status). Overall, we can conclude that potash-mining activities have the potential to cause severe ecological damage to their surrounding streams. This is mainly related to an inadequate management of the mine tailings, leading to highly saline runoff and percolates entering surface waters. Thus, we urge water managers and policy makers to take action to prevent, detect and remediate salt pollution of rivers and streams in potash mining areas.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Leo Posthuma ◽  
Michiel C. Zijp ◽  
Dick De Zwart ◽  
Dik Van de Meent ◽  
Lidija Globevnik ◽  
...  

Abstract Aquatic ecosystems are affected by man-made pressures, often causing combined impacts. The analysis of the impacts of chemical pollution is however commonly separate from that of other pressures and their impacts. This evolved from differences in the data available for applied ecology vis-à-vis applied ecotoxicology, which are field gradients and laboratory toxicity tests, respectively. With this study, we demonstrate that the current approach of chemical impact assessment, consisting of comparing measured concentrations to protective environmental quality standards for individual chemicals, is not optimal. In reply, and preparing for a method that would enable the comprehensive assessment and management of water quality pressures, we evaluate various quantitative chemical pollution pressure metrics for mixtures of chemicals in a case study with 24 priority substances of Europe-wide concern. We demonstrate why current methods are sub-optimal for water quality management prioritization and that chemical pollution currently imposes limitations to the ecological status of European surface waters. We discuss why management efforts may currently fail to restore a good ecological status, given that to date only 0.2% of the compounds in trade are considered in European water quality assessment and management.


Author(s):  
Bogusław Szulc ◽  
Katarzyna Szulc

AbstractThe main aim of this study was to assess the usefulness of the Biological Diatom Index (BDI) (Lenoir & Coste 1996) for the estimation of water quality in the central section of the Pilica River, located in central Poland in Łódź province. The BDI has never been used before to monitor Polish surface waters. An analysis of the correlations between the values of the BDI and selected physico-chemical parameters was performed, as was an assessment of water quality using the BDI. On the basis of value ranges proposed by Descy and Ector (1996), a good ecological status in the Pilica River was obtained, but this did not correspond with the results achieved from the physico-chemical analysis. This study proposes new value ranges for the BDI. With these new values, the ecological state of the Pilica River changed from good to moderate, which corresponded with the physico-chemical analysis of the water. The new, proposed value ranges for the BDI assess more precisely the quality of water in lowland Polish rivers.


Author(s):  
O. Szomolányi ◽  
A. Clement

Abstract The objective of the Water Framework Directive (WFD) is to achieve good ecological status in surface waters by 2027. To make a proper evaluation of the ecological status of watercourses, it is necessary to harmonize class boundaries for chemical and biological quality elements (BQEs). This paper aims to explore the linkages between physicochemical parameters and BQEs and set river nutrient threshold concentrations that support good ecological status. Regression and mismatch methods were applied to find the relationship between phytoplankton (PP) and phytobenthos (PB) environmental quality ratio and mean total phosphorus (TP) and total nitrogen (TN) concentrations. Nutrient thresholds have been suggested for several water types, which are varied in the case of highland rivers 1.8–6.2 mg TN/l, 180–400 μg TP/l; in the case of lowland rivers 1.4–5.0 mg TN/l, and 100–350 μg TP/l. These values are similar to what other studies found, but the relationship between biology and nutrients was weaker. Besides nutrients, additional data of measured dissolved organic carbon, 5-day biochemical oxygen demand, chemical oxygen demand with potassium permanganate method, and information about hydromorphological features were involved in the analysis. The research demonstrates that random forest can be used as a nonlinear, multiparametric model for predicting biological class from five variables with 35–81% error for PP and with 18–47% error for PB.


Author(s):  
Sebastiaan Schep ◽  
Gerard Ter Heerdt ◽  
Jan Janse ◽  
Maarten Ouboter

Possible effects of climate change on ecological functioning of shallow lakes, Lake Loenderveen as a case study The European Water Framework Directive (WFD) requires all inland and coastal waters to reach "good ecological status" by 2015. The good ecological status of shallow lakes can be characterised by clear water dominated by submerged vegetation. The ecological response of shallow lakes on nutrients largely depends on morphological and hydrological features, such as water depth, retention time, water level fluctuations, bottom type, fetch etc. These features determine the "critical nutrient load" of a lake. When the actual nutrient load of a lake is higher than the critical nutrient load, the ecological quality of this lake will deteriorate, resulting in a turbid state dominated by algae. Climate change might lead to changes in both environmental factors and ecosystem response. This certainly will have an effect on the ecological status. As an illustration the results of a multidiscipline study of a shallow peaty lake (Loenderveen) are presented, including hydrology, geochemistry and ecology. Ground- and surface water flows, nutrient dynamics and ecosystem functioning have been studied culminating in an application of the ecological model of the lake (PCLake). Future scenarios were implemented through changing precipitation, evaporation and temperature. Climate change will lead to higher nutrient loads and lower critical nutrient loads. As a consequence lakes shift easier from clear water to a turbid state.


2019 ◽  
Vol 31 (1) ◽  
Author(s):  
Leo Posthuma ◽  
Werner Brack ◽  
Jos van Gils ◽  
Andreas Focks ◽  
Christin Müller ◽  
...  

Abstract The ecological status of European surface waters may be affected by multiple stressors including exposure to chemical mixtures. Currently, two different approaches are used separately to inform water quality management: the diagnosis of the deterioration of aquatic ecosystems caused by nutrient loads and habitat quality, and assessment of chemical pollution based on a small set of chemicals. As integrated assessments would improve the basis for sound water quality management, it is recommended to apply a holistic approach to integrated water quality status assessment and management. This allows for estimating the relative contributions of exposure to mixtures of the chemicals present and of other stressors to impaired ecological status of European water bodies. Improved component- and effect-based methods for chemicals are available to support this. By applying those methods, it was shown that a holistic diagnostic approach is feasible, and that chemical pollution acts as a limiting factor for the ecological status of European surface waters. In a case study on Dutch surface waters, the impact on ecological status could be traced back to chemical pollution affecting individual species. The results are also useful as calibration of the outcomes of component-based mixture assessment (risk quotients or mixture toxic pressures) on ecological impacts. These novel findings provide a basis for a causal and integrated analysis of water quality and improved methods for the identification of the most important stressor groups, including chemical mixtures, to support integrated knowledge-guided management decisions on water quality.


2021 ◽  
Vol 13 (8) ◽  
pp. 4341
Author(s):  
Laima Česonienė ◽  
Daiva Šileikienė ◽  
Vitas Marozas ◽  
Laura Čiteikė

Twenty-six water bodies and 10 ponds were selected for this research. Anthropogenic loads were assessed according to pollution sources in individual water catchment basins. It was determined that 50% of the tested water bodies had Ntotal values that did not correspond to the good and very good ecological status classes, and 20% of the tested water bodies had Ptotal values that did not correspond to the good and very good ecological status classes. The lake basins and ponds received the largest amounts of pollution from agricultural sources with total nitrogen at 1554.13 t/year and phosphorus at 1.94 t/year, and from meadows and pastures with total nitrogen at 9.50 t/year and phosphorus at 0.20 t/year. The highest annual load of total nitrogen for lake basins on average per year was from agricultural pollution from arable land (98.85%), and the highest total phosphorus load was also from agricultural pollution from arable land (60%).


2018 ◽  
Vol 94 ◽  
pp. 185-197 ◽  
Author(s):  
Sandra Poikane ◽  
Rob Portielje ◽  
Luc Denys ◽  
Didzis Elferts ◽  
Martyn Kelly ◽  
...  

Author(s):  
N. Blazhko

Reviewed the current state of wetland landscape systems (PLC) Lviv region. Highlighted areas PLC of good ecological status, with a satisfactory ecological condition and unsatisfactory environmental conditions. Key words: overmoistened landscape systems (OLS)peat, peat, drainage improvement, environmental stabilizing factors, environmental destabilizing factors.


Sign in / Sign up

Export Citation Format

Share Document