Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS

2011 ◽  
Vol 37 (7) ◽  
pp. 1064-1071 ◽  
Author(s):  
G. Mühlbachová
2016 ◽  
Vol 42 (4) ◽  
pp. 3-11 ◽  
Author(s):  
Anna Markowicz ◽  
Grażyna Płaza ◽  
Zofia Piotrowska-Seget

Abstract The impacts of long-term polycyclic aromatic hydrocarbons (PAHs) and heavy metal pollution on soil microbial communities functioning were studied in soils taken from an old coke plant. The concentrations of PAHs in the tested soils ranged from 171 to 2137 mg kg-1. From the group of tested heavy metals, concentrations of lead were found to be the highest, ranging from 57 to 3478 mg kg-1, while zinc concentrations varied from 247 to 704 mg kg-1 and nickel from 10 to 666 mg kg-1. High dehydrogenase, acid and alkaline phosphatase activities were observed in the most contaminated soil. This may indicate bacterial adaptation to long-term heavy metal and hydrocarbon contamination. However, the Community Level Physiological Profiles (CLPPs) analysis showed that the microbial functional diversity was reduced and influenced to a higher extent by some metals (Pb, Ni), moisture and conductivity than by PAHs.


Author(s):  
A Taraqqi-A-Kamal ◽  
Christopher J. Atkinson ◽  
Aimal Khan ◽  
Kaikai Zhang ◽  
Peng Sun ◽  
...  

The focus of this study is on the soil physicochemical, biological, and microbiological processes altered by biochar application to heavy metal (HM) contaminated soils. The aim is to highlight agronomical and environmental issues by which the restorative capacity of biochar might be developed. Literature shows biochar can induce soil remediation, however, it is unclear how soil processes are linked mechanistically to biochar production and if these processes can be manipulated to enhance soil remediation. The literature often fails to contribute to an improved understanding of the mechanisms by which biochar alters soil function. It is clear that factors such as biochar feedstock, pyrolysis conditions, application rate, and soil type are determinants in biochar soil functionality. These factors are developed to enhance our insight into production routes and the benefits of biochar in HM soil remediation. Despite a large number of studies of biochar in soils, there is little understanding of long-term effects, this is particularly true with respect to the use and need for reapplication in soil remediation.  


Sign in / Sign up

Export Citation Format

Share Document