Fluoride removal by aluminum-modified pine sawdust: Effect of competitive ions

2016 ◽  
Vol 94 ◽  
pp. 365-379 ◽  
Author(s):  
Adriana Vázquez-Guerrero ◽  
Ruth Alfaro-Cuevas-Villanueva ◽  
José Guadalupe Rutiaga-Quiñones ◽  
Raúl Cortés-Martínez
2017 ◽  
Vol 68 (1) ◽  
pp. 168-171 ◽  
Author(s):  
Letitia Doina Duceac ◽  
Cristina Elena Dobre ◽  
Ioana Pavaleanu ◽  
Gabriela Calin ◽  
Simona Nichitus ◽  
...  

Preventing diseases is deemed to be the major goal of our century especially when an excessive fluoride in drinking water can cause dental fluorosis, bone stiffness, rheumatism and skeletal fluorosis. Fluoride uptake from groundwater implies a worldwide multidisciplinary effort in order to develop renewable, cheap, human friendly materials. Among other materials, hydrotalcites could be good candidates for an efficient fluoride removal from water due to their adsorption, anion exchange and reconstruction properties. These nanostructured materials were synthesized using co-precipitation method in controlled conditions. Presence of anions in the interlayer structure and morphological aspects were performed by FTIR and SEM techniques. Thermal treatment of hydrotalcites showed good adsorption capacities for water defluoridation mostly due to their tendency to restore the original structure.


2020 ◽  
Vol 2 (2) ◽  
pp. 83-91
Author(s):  
Masanori Kikuchi ◽  
Yuki Arioka ◽  
Masamoto Tafu ◽  
Mitsuteru Irie

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1125
Author(s):  
Osiel González Dávila

This paper estimates the prevalence and severity of dental fluorosis among participants in the first wave of The Aguascalientes Longitudinal Study of Child Development (EDNA). The analytical sample includes 1052 children in 100 public elementary schools. Dental fluorosis is determined using the Modified Dean’s Index. There is a 43% general dental fluorosis prevalence, and the estimated Community Fluorosis Index is 0.99. Five municipalities report average groundwater fluoride concentrations above the official Mexican guideline value of 1.5 mg/L. In those municipalities, there is a 50% average dental fluorosis prevalence. An ordered logistic regression analysis indicates that obesity in participants increases the likelihood of suffering more severe dental fluorosis symptoms compared with normal-weight participants (OR = 1.62, p < 0.05). Households consuming tap water are more likely to have children suffering more severe dental fluorosis symptoms (OR = 1.63, p < 0.05). Children aged 8 years are more likely to present more severe dental fluorosis symptoms than their peers aged 7 years (OR = 1.37, p < 0.05). Dental fluorosis will persist as a public health problem in Aguascalientes State unless appropriate technologies for fluoride removal from water are installed and operated.


Drug Research ◽  
2021 ◽  
Author(s):  
Anuroop Kumar ◽  
Netrapal Singh ◽  
Mordhwaj Kumar ◽  
Uma Agarwal

AbstractThis article reports an amide based Chemosensor used for selective detection of divalent Cu+2 and Ni+2 ions via Fluorescence turn off. The selective sensing ability of Chemosensor was investigated in presence of different metal ions Mg2+, Ag+, Fe2+, K+, Cu2+, Ni2+, Hg2+, Pb2+, Mn2+, Pd2+, Cd2+ and Mn3+ as competitive ions. The receptor i. e. Chemosensor formed complexes with metal ions in 1:1 stoichiometric ratio. The detection limit and binding constant calculated as 1.92×10–4 and 1.4×10–4 M and 2.16×103 M−1 and 3.09×103 M−1 for Cu2+ and Ni2+ions respectively. The complexes were characterized by UV/visible, FT-IR, 13C NMR and 1H NMR spectroscopy. Further the structure and Crystallinity were calculated by P-XRD spectral analysis. The crystallinity found to be 65.27 and 67.87% respectively


2021 ◽  
Vol 9 (2) ◽  
pp. 104962
Author(s):  
A.R. Kumarasinghe ◽  
W.P.R.T. Perera ◽  
J. Bandara ◽  
P. Rukshagini ◽  
L. Jayarathe ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1090
Author(s):  
Solange Magalhães ◽  
Alexandra Filipe ◽  
Elodie Melro ◽  
Catarina Fernandes ◽  
Carla Vitorino ◽  
...  

Lignocellulosic biomass fractionation is typically performed using methods that are somehow harsh to the environment, such as in the case of kraft pulping. In recent years, the development of new sustainable and environmentally friendly alternatives has grown significantly. Among the developed systems, bio-based solvents emerge as promising alternatives for biomass processing. Therefore, in the present work, the bio-based and renewable chemicals, levulinic acid (LA) and formic acid (FA), were combined to fractionate lignocellulosic waste (i.e., maritime pine sawdust) and isolate lignin. Different parameters, such as LA:FA ratio, temperature, and extraction time, were optimized to boost the yield and purity of extracted lignin. The LA:FA ratio was found to be crucial regarding the superior lignin extraction from the waste biomass. Moreover, the increase in temperature and extraction time enhances the amount of extracted residue but compromises the lignin purity and reduces its molecular weight. The electron microscopy images revealed that biomass samples suffer significant structural and morphological changes, which further suggests the suitability of the newly developed bio-fractionation process. The same was concluded by the FTIR analysis, in which no remaining lignin was detected in the cellulose-rich fraction. Overall, the novel combination of bio-sourced FA and LA has shown to be a very promising system for lignin extraction with high purity from biomass waste, thus contributing to extend the opportunities of lignin manipulation and valorization into novel added-value biomaterials.


Sign in / Sign up

Export Citation Format

Share Document