A comparative assessment of SWAT-model-based evapotranspiration against regional-scale estimates

2018 ◽  
Vol 122 ◽  
pp. 1-9 ◽  
Author(s):  
Jong Ahn Chun ◽  
Jongjin Baik ◽  
Daeha Kim ◽  
Minha Choi
2012 ◽  
Vol 16 (9) ◽  
pp. 3083-3099 ◽  
Author(s):  
H. Xie ◽  
L. Longuevergne ◽  
C. Ringler ◽  
B. R. Scanlon

Abstract. Irrigation development is rapidly expanding in mostly rainfed Sub-Saharan Africa. This expansion underscores the need for a more comprehensive understanding of water resources beyond surface water. Gravity Recovery and Climate Experiment (GRACE) satellites provide valuable information on spatio-temporal variability in water storage. The objective of this study was to calibrate and evaluate a semi-distributed regional-scale hydrologic model based on the Soil and Water Assessment Tool (SWAT) code for basins in Sub-Saharan Africa using seven-year (July 2002–April 2009) 10-day GRACE data and multi-site river discharge data. The analysis was conducted in a multi-criteria framework. In spite of the uncertainty arising from the tradeoff in optimising model parameters with respect to two non-commensurable criteria defined for two fluxes, SWAT was found to perform well in simulating total water storage variability in most areas of Sub-Saharan Africa, which have semi-arid and sub-humid climates, and that among various water storages represented in SWAT, water storage variations in soil, vadose zone and groundwater are dominant. The study also showed that the simulated total water storage variations tend to have less agreement with GRACE data in arid and equatorial humid regions, and model-based partitioning of total water storage variations into different water storage compartments may be highly uncertain. Thus, future work will be needed for model enhancement in these areas with inferior model fit and for uncertainty reduction in component-wise estimation of water storage variations.


2018 ◽  
Vol 38 (14) ◽  
Author(s):  
祖拜代·木依布拉 ZUBAIDA·Muyibul ◽  
师庆东 SHI Qingdong ◽  
普拉提·莫合塔尔 POLAT·Muhtar ◽  
张润 ZHANG Run

2018 ◽  
Vol 30 (2) ◽  
pp. 472-487
Author(s):  
LAI Geying ◽  
◽  
QIU Lin ◽  
ZHANG Zhiyong ◽  
PAN Ruixin ◽  
...  

Author(s):  
Carlos H. Grohmann

Global Digital Elevation Models (GDEMs) are datasets of vital importance for regional-scale analysis in areas such as geomorphology, [paleo]climatology, oceanography and biodiversity. In this work I present a comparative assessment of the datasets ETOPO1 (1’ resolution), GTOPO30, GLOBE, SRTM30 PLUS, GMTED2010 and ACE2 (30”) against the altitude of the world’s ultra prominent peaks. GDEMs’ elevations show an expected tendency of underestimating the peak’s altitude, but differences reach 3,500 m. None of the GDEMs captures the full range of elevation on Earth and they do not represent well the altitude of the most prominent peaks. Some of these problems could be addressed with the release of NASADEM, but the smoothing effect caused by moving-window resampling can only be tackled by using new techniques, such as scale-adaptative kernels and curvature-based terrain generalisation.


Author(s):  
Tamara Fernández-Arévalo ◽  
Xavier Flores-Alsina ◽  
Paloma Grau ◽  
Ulf Jeppsson ◽  
Miguel Mauricio-Iglesias ◽  
...  

2020 ◽  
Vol 588 ◽  
pp. 125098 ◽  
Author(s):  
Shujiang Pang ◽  
Xiaoyan Wang ◽  
Charles S. Melching ◽  
Karl-Heinz Feger

2020 ◽  
Author(s):  
Pei Zhang ◽  
Donghai Zheng ◽  
Rogier van der Velde ◽  
Jun Wen ◽  
Yijian Zeng ◽  
...  

Abstract. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) was established ten years ago, which has been widely used to calibrate/validate satellite- and model-based soil moisture (SM) products for their applications to the Tibetan Plateau (TP). This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface SM dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs that consists of three regional-scale SM monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface SM dataset includes the original 15-min in situ measurements collected by multiple SM monitoring sites of the three networks, and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks. Comparisons between four spatial upscaling methods, i.e. arithmetic averaging, Voronoi diagram, time stability and apparent thermal inertia, show that the arithmetic average of the monitoring sites with long-term (i.e. ≥ six years) continuous measurements are found to be most suitable to produce the upscaled SM records. Trend analysis of the 10-year upscaled SM records using the Mann-Kendall method shows that the Maqu network area in the eastern part of the TP is drying while the Shiquanhe network area in the west is getting wet that generally follow the change of precipitation. To further demonstrate the uniqueness of the upscaled SM records in validating existing SM products for long term period (~ 10 years), comparisons are conducted to evaluate the reliability of three reanalysis datasets for the Maqu and Shiquanhe network areas. It is found that current model-based SM products still show deficiencies in representing the trend and variation of measured SM dynamics in the Tibetan grassland (i.e. Maqu) and desert ecosystems (i.e. Shiquanhe) that dominate the landscape of the TP. The dataset would be also valuable for calibrating/validating long-term satellite-based SM products, evaluation of SM upscaling methods, development of data fusion methods, and quantifying the coupling strength between precipitation and SM at 10-year scale. The dataset is available in the 4TU.ResearchData repository at https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834 (Zhang et al., 2020).


2021 ◽  
Vol 13 (6) ◽  
pp. 3075-3102
Author(s):  
Pei Zhang ◽  
Donghai Zheng ◽  
Rogier van der Velde ◽  
Jun Wen ◽  
Yijian Zeng ◽  
...  

Abstract. The Tibetan Plateau observatory (Tibet-Obs) of plateau scale soil moisture and soil temperature was established 10 years ago and has been widely used to calibrate/validate satellite- and model-based soil moisture (SM) products for their applications to the Tibetan Plateau (TP). This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface SM dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs that consists of three regional-scale SM monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of the three networks and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks. Comparisons between four spatial upscaling methods – i.e. arithmetic averaging, Voronoi diagrams, time stability, and apparent thermal inertia – show that the arithmetic average of the monitoring sites with long-term (i.e. ≥ 6-year) continuous measurements is found to be most suitable to produce the upscaled SM records. Trend analysis of the 10-year upscaled SM records indicates that the Shiquanhe network in the western part of the TP is getting wet, while there is no significant trend found for the Maqu network in the east. To further demonstrate the uniqueness of the upscaled SM records in validating existing SM products for a long-term period (∼10 years), the reliability of three reanalysis datasets is evaluated for the Maqu and Shiquanhe networks. It is found that current model-based SM products still show deficiencies in representing the measured SM dynamics in the Tibetan grassland (i.e. Maqu) and desert ecosystems (i.e. Shiquanhe). The dataset would also be valuable for calibrating/validating long-term satellite-based SM products, evaluation of SM upscaling methods, development of data fusion methods, and quantifying the coupling of SM and precipitation at a 10-year scale. The dataset is available in the 4TU.ResearchData repository at https://doi.org/10.4121/12763700.v7 (Zhang et al., 2020).


Sign in / Sign up

Export Citation Format

Share Document