slope condition
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 17)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 216 ◽  
pp. 112689
Author(s):  
Sebastiano Don ◽  
Luca Lussardi ◽  
Andrea Pinamonti ◽  
Giulia Treu

2022 ◽  
Vol 15 ◽  
Author(s):  
Namita Anil Kumar ◽  
Shawanee Patrick ◽  
Woolim Hong ◽  
Pilwon Hur

User customization of a lower-limb powered Prosthesis controller remains a challenge to this date. Controllers adopting impedance control strategies mandate tedious tuning for every joint, terrain condition, and user. Moreover, no relationship is known to exist between the joint control parameters and the slope condition. We present a control framework composed of impedance control and trajectory tracking, with the transitioning between the two strategies facilitated by Bezier curves. The impedance (stiffness and damping) functions vary as polynomials during the stance phase for both the knee and ankle. These functions were derived through least squares optimization with healthy human sloped walking data. The functions derived for each slope condition were simplified using principal component analysis. The weights of the resulting basis functions were found to obey monotonic trends within upslope and downslope walking, proving the existence of a relationship between the joint parameter functions and the slope angle. Using these trends, one can now design a controller for any given slope angle. Amputee and able-bodied walking trials with a powered transfemoral prosthesis revealed the controller to generate a healthy human gait. The observed kinematic and kinetic trends with the slope angle were similar to those found in healthy walking.


2021 ◽  
Vol 18 (182) ◽  
pp. 20210539
Author(s):  
Sebastian Büsse ◽  
Thies H. Büscher ◽  
Lars Heepe ◽  
Stanislav N. Gorb ◽  
Hans Henning Stutz

Sandy pitfall traps of antlions are elaborate constructions to capture prey. Antlions exploit the interactions between the particles in their habitat and build a stable trap. This trap is close to the unstable state; prey items will slide towards the centre—where the antlion ambushes—when entering the trap. This is efficient but requires permanent maintenance. According to the present knowledge, antlions throw sand, mainly to cause sandslides towards the centre of the pit. We hypothesized that: (i) sand-throwing causes sandslides towards the centre of the pit and (ii) sand-throwing constantly maintains the pitfall trap and thus keeps its efficiency high. Using laboratory experiments, as well as finite-element analysis, we tested these hypotheses. We show, experimentally and numerically, that sand that accumulates at the centre of the pit will be removed continuously by sand-throwing, this maintenance is leading to slope condition close to an unstable state. This keeps the slope angle steep and the efficiency of the trap constant. Furthermore, the resulting sandslides can relocate the trapped prey towards the centre of the pit. This study adds further insights from specific mechanical properties of a granular medium into the behavioural context of hunting antlion larvae.


2021 ◽  
Vol 3 ◽  
Author(s):  
Eilif Kurnia Deda Djamres ◽  
Daisuke Komori ◽  
So Kazama

The methodology examined for this study was based on statistical analyses and GIS computations of frequent inland water flooding areas in Tangerang city, Indonesia during 2008–2015. Primary data used for this study were inland water flooding records from Tangerang city government and an approximately 90 m Merit DEM. We extracted the topographical characteristics of frequent inland water flooding areas and used principal component analysis to find its main characteristics. Results show that frequent inland water flooding areas in Tangerang emerged because of a slope in the upstream condition, the correlation between concave and flow length conditions, correlation of the slope condition and distance to a river, and relations among flow length in upstream characteristics and distance to a pond. Furthermore, a principal component score of frequent inland water flooding areas and other areas in the city was compared with measure similarity. This method correctly identified 71% of frequent inland water flooding areas. Also, 74% of one-time inland water flooding areas were classified as locations with high topographical similarity. Furthermore, field surveys indicated that the remaining 29% of frequent inland water flooding areas had low topographical similarity because of anthropogenic factors.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Stanin

Abstract We study regularity properties of variational solutions to a class of Cauchy–Dirichlet problems of the form { ∂ t ⁡ u - div x ⁡ ( D ξ ⁢ f ⁢ ( D ⁢ u ) ) = 0 in  ⁢ Ω T , u = u 0 on  ⁢ ∂ 𝒫 ⁡ Ω T . \left\{\begin{aligned} \displaystyle\partial_{t}u-\operatorname{div}_{x}(D_{% \xi}f(Du))&\displaystyle=0&&\displaystyle\phantom{}\text{in }\Omega_{T},\\ \displaystyle u&\displaystyle=u_{0}&&\displaystyle\phantom{}\text{on }\partial% _{\mathcal{P}}\Omega_{T}.\end{aligned}\right. We do not impose any growth conditions from above on f : ℝ n → ℝ {f\colon\mathbb{R}^{n}\to\mathbb{R}} , but only require it to be convex and coercive. The domain Ω ⊂ ℝ n {\Omega\subset\mathbb{R}^{n}} is mainly supposed to be bounded and convex, and for the time-independent boundary datum u 0 : Ω ¯ → ℝ {u_{0}\colon\overline{\Omega}\to\mathbb{R}} we only require continuity. These requirements are weaker than a one-sided bounded slope condition. We prove global continuity of the unique variational solution u : Ω T → ℝ {u\colon\Omega_{T}\to\mathbb{R}} . If the boundary datum is Lipschitz continuous, we obtain global Hölder continuity of the solution.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1657
Author(s):  
Jingzhou Zhang ◽  
Shengtang Zhang ◽  
Si Chen ◽  
Ming Liu ◽  
Xuefeng Xu ◽  
...  

To explore the characteristics of overland flow resistance under the condition of sparse vegetative stem coverage and improve the basic theoretical research of overland flow, the resistance characteristics of overland flow were systematically investigated under four slope gradients (S), seven flow discharges (Q), and six degrees of vegetation coverage (Cr). The results show that the Manning roughness coefficient (n) changes with the ratio of water depth to vegetation height (h/hv) while the Reynolds number (Re), Froude number (Fr), and slope (S) are closely related to vegetation coverage. Meanwhile, h/hv, Re, and Cr have strong positive correlations with n, while Fr and S have strong negative correlations with n. Through data regression analysis, a power function relationship between n and hydraulic parameters was observed and sensitivity analysis was performed. It was concluded that the relationship between n and h/hv, Re, Cr, Q, and S shows the same law; in particular, for sparse stem vegetation coverage, Cr is the dominant factor affecting overland flow resistance under zero slope condition, while Cr is no longer the first dominant factor affecting overland flow resistance under non-zero slope condition. In the relationship between n and Fr, Cr has the least effect on overland flow resistance. This indicates that when Manning roughness coefficient is correlated with different hydraulic parameters, the same vegetation coverage has different effects on overland flow resistance. Therefore, it is necessary to study overland flow resistance under the condition of sparse stalk vegetation coverage.


2020 ◽  
Vol 4 (1) ◽  
pp. 77-81
Author(s):  
Rodeano Roslee ◽  
Jeffery Anak Pirah ◽  
Ahmad Nazrul Madri ◽  
Mohd Fauzi Zikiri

During the feasibility and preliminary design stages of a project, when very little detailed information on the rock mass and its geomechanic characteristics is not available, the use of a Rock Mass Classification Scheme (RMCS) can be of considerable benefit. Various parameters were used in order to identify the RMCS. The parameter comprised of Rock Quality Designation (RQD), Rock Mass Rating (RMR), Rock Structure Rating (RSR), Geological Strength Index (GSI), Slope Mass Rating (SMR), etc. In this paper, we present the results of the applicability of the Geological Strength Index (GSI) classification for the Trusmadi Formation in Sabah, Malaysia. The GSI classification system is based on the assumption that the rock mass contains a sufficient number of “randomly” oriented discontinuities such that it behaves as a homogeneous isotropic mass. In this study, the GSI relates the properties of the intact rock elements/blocks to those of the overall rock mass. It is based on an assessment of the lithology, structure and condition of discontinuity surfaces in the rock mass and is estimated from visual examination of the rock mass exposed in outcrops or surface excavations. A total of ten (10) locations were selected on the basis of exposures of the lithology and slope condition of the Trusmadi Formation. The Trusmadi Formation regionally experienced of two major structural orientations NW-SE and NE-SW. It consists mostly of dark grey shale with thin bedded sandstones, typical of a turbidite deposit. This unit has been subjected to low grade of metamorphism, producing slates, phyllites and meta-sediments and intense tectonic deformation producing disrupted or brecciated beds. Quartz vein are quite widespread within the joints on sandstone beds. The shale is dark grey when fresh but changes light grey to brownish when weathered. The results are classified as “Poor Rock” to “Fair Rock” in term of GSI. The poor categories (TR2 and TR7) represent slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments. It is also characterized as blocky/ disturbed/seamy, which folded with angular blocks formed by many intersecting discontinuity sets. The fair categories can be divided into two (2) types; type 1 (TR1, TR6 and TR8) which represent as smooth, moderately weathered and have altered surfaces. It is also characterised as very blocky rock, which indicates interlocked, partially disturbed ass with multi-faceted angular blocks formed by 4 or more joint sets. Type 2 (TR3, TR4, TR5, TR9 and TR10) which represent as smooth, moderately weathered and have altered surfaces but characterized as blocky/disturbed/seamy, which folded with angular blocks formed by many intersecting discontinuity sets. It also has persistence of bedding planes or schistosity.


Author(s):  
Hania Arif ◽  
Bushra Talib ◽  
Muhammad Shahzad ◽  
Syed Amer Mehmood ◽  
HAfsa Batool ◽  
...  

Changes in land use and land cover affect the social, economic and natural aspects of any area. Mostly land use and land cover (LULC) changes are the result of population growth and human activities in the form of urban agglomerations and industrialization etc. Physical factors like soil structure and type, slope condition, topography are main aspects. Land use change defines the historical pattern that how people used that specific land which depends on the availability of resources and economic conditions. LULC changes may trigger the detrimental effects like increase in natural hazard events and changes in climatic patterns. Climatic pattern directly affects the precipitation, groundwater recharge, the amount of evapotranspiration and runoff generation. On regional and local scale, LULC change is a far-reaching issue because environment and climate condition depend on it


2020 ◽  
Vol 588 ◽  
pp. 125098 ◽  
Author(s):  
Shujiang Pang ◽  
Xiaoyan Wang ◽  
Charles S. Melching ◽  
Karl-Heinz Feger

2020 ◽  
Vol 16 (6) ◽  
pp. 85-95
Author(s):  
Ye Eun Lee ◽  
Jeong Ki Kim ◽  
Cheol An Bang ◽  
Song Hee Han ◽  
Chun Geun Kwon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document