Spatiotemporally resolved ambient particulate matter concentration by fusing observational data and ensemble chemical transport model simulations

2018 ◽  
Vol 385 ◽  
pp. 173-181 ◽  
Author(s):  
E. Chianese ◽  
A. Galletti ◽  
G. Giunta ◽  
T.C. Landi ◽  
L. Marcellino ◽  
...  
2016 ◽  
Vol 50 (7) ◽  
pp. 3695-3705 ◽  
Author(s):  
Mariel D. Friberg ◽  
Xinxin Zhai ◽  
Heather A. Holmes ◽  
Howard H. Chang ◽  
Matthew J. Strickland ◽  
...  

2012 ◽  
Vol 12 (15) ◽  
pp. 7073-7085 ◽  
Author(s):  
J. Kuttippurath ◽  
S. Godin-Beekmann ◽  
F. Lefèvre ◽  
G. Nikulin ◽  
M. L. Santee ◽  
...  

Abstract. We present a detailed discussion of the chemical and dynamical processes in the Arctic winters 1996/1997 and 2010/2011 with high resolution chemical transport model (CTM) simulations and space-based observations. In the Arctic winter 2010/2011, the lower stratospheric minimum temperatures were below 195 K for a record period of time, from December to mid-April, and a strong and stable vortex was present during that period. Simulations with the Mimosa-Chim CTM show that the chemical ozone loss started in early January and progressed slowly to 1 ppmv (parts per million by volume) by late February. The loss intensified by early March and reached a record maximum of ~2.4 ppmv in the late March–early April period over a broad altitude range of 450–550 K. This coincides with elevated ozone loss rates of 2–4 ppbv sh−1 (parts per billion by volume/sunlit hour) and a contribution of about 30–55% and 30–35% from the ClO-ClO and ClO-BrO cycles, respectively, in late February and March. In addition, a contribution of 30–50% from the HOx cycle is also estimated in April. We also estimate a loss of about 0.7–1.2 ppmv contributed (75%) by the NOx cycle at 550–700 K. The ozone loss estimated in the partial column range of 350–550 K exhibits a record value of ~148 DU (Dobson Unit). This is the largest ozone loss ever estimated in the Arctic and is consistent with the remarkable chlorine activation and strong denitrification (40–50%) during the winter, as the modeled ClO shows ~1.8 ppbv in early January and ~1 ppbv in March at 450–550 K. These model results are in excellent agreement with those found from the Aura Microwave Limb Sounder observations. Our analyses also show that the ozone loss in 2010/2011 is close to that found in some Antarctic winters, for the first time in the observed history. Though the winter 1996/1997 was also very cold in March–April, the temperatures were higher in December–February, and, therefore, chlorine activation was moderate and ozone loss was average with about 1.2 ppmv at 475–550 K or 42 DU at 350–550 K, as diagnosed from the model simulations and measurements.


2011 ◽  
Vol 11 (24) ◽  
pp. 12773-12786 ◽  
Author(s):  
S. Dhomse ◽  
M. P. Chipperfield ◽  
W. Feng ◽  
J. D. Haigh

Abstract. We have used an off-line 3-D chemical transport model (CTM) to investigate the 11-yr solar cycle response in tropical stratospheric ozone. The model is forced with European Centre for Medium-Range Weather Forecasts (ECMWF) (re)analysis (ERA-40/operational and ERA-Interim) data for the 1979–2005 time period. We have compared the modelled solar response in ozone to observation-based data sets that are constructed using satellite instruments such as Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter UltraViolet instrument (SBUV), Stratospheric Aerosol and Gas Experiment (SAGE) and Halogen Occultation Experiment (HALOE). A significant difference is seen between simulated and observed ozone during the 1980s, which is probably due to inhomogeneities in the ERA-40 reanalyses. In general, the model with ERA-Interim dynamics shows better agreement with the observations from 1990 onwards than with ERA-40. Overall both standard model simulations are partially able to simulate a "double peak"-structured ozone solar response with a minimum around 30 km, and these are in better agreement with HALOE than SAGE-corrected SBUV (SBUV/SAGE) or SAGE-based data sets. In the tropical lower stratosphere (TLS), the modelled solar response with time-varying aerosols is amplified through aliasing with a volcanic signal, as the model overestimates ozone loss during high aerosol loading years. However, the modelled solar response with fixed dynamics and constant aerosols shows a positive signal which is in better agreement with SBUV/SAGE and SAGE-based data sets in the TLS. Our model simulations suggests that photochemistry contributes to the ozone solar response in this region. The largest model-observation differences occur in the upper stratosphere where SBUV/SAGE and SAGE-based data show a significant (up to 4%) solar response whereas the standard model and HALOE do not. This is partly due to a positive solar response in the ECMWF upper stratospheric temperatures which reduces the modelled ozone signal. The large positive upper stratospheric solar response seen in SBUV/SAGE and SAGE-based data can be reproduced in model runs with fixed dynamical fields (i.e. no inter-annual meteorological changes). As these runs effectively assume no long-term temperature changes (solar-induced or otherwise), it should provide an upper limit of the ozone solar response. Overall, full quantification of the solar response in stratospheric ozone is limited by differences in the observed data sets and by uncertainties in the solar response in stratospheric temperatures.


2017 ◽  
Vol 17 (6) ◽  
pp. 4305-4318 ◽  
Author(s):  
Shantanu H. Jathar ◽  
Matthew Woody ◽  
Havala O. T. Pye ◽  
Kirk R. Baker ◽  
Allen L. Robinson

Abstract. Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA–SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data. Mobile sources were predicted to contribute 30–40 % of the OA in southern California (half of which was SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA was attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing to less than 5 % to the total OA. Gasoline sources were predicted to contribute about 13 times more OA than diesel sources; this difference was driven by differences in SOA production. Model predictions highlighted the need to better constrain multi-generational oxidation reactions in chemical transport models.


Sign in / Sign up

Export Citation Format

Share Document