scholarly journals The Efficiency of Using Different Outer Wall Construction Materials to Achieve Thermal Comfort in Various Climatic Zones

2017 ◽  
Vol 115 ◽  
pp. 321-331 ◽  
Author(s):  
Mary Felix ◽  
Eslam Elsamahy
2009 ◽  
Vol 25 (suppl 1) ◽  
pp. S168-S178 ◽  
Author(s):  
Carlota Monroy ◽  
Dulce Maria Bustamante ◽  
Sandy Pineda ◽  
Antonieta Rodas ◽  
Xochitl Castro ◽  
...  

The deterioration or absence of plaster walls in houses and poor hygienic conditions are the most important risk factors for indoor Triatoma dimidiata infestation in Guatemala. A cross-disciplinary study was conducted addressing T. dimidiata infestation, household hygiene, and housing construction. The study focused on local materials and cultural aspects (including gender roles) that could lead to long-term improvements in wall construction. A new plaster mix for walls was developed on the basis of laboratory studies on construction materials recommended by local villagers. Four villages with persistent (post-spraying) T. dimidiata infestation were studied. In two villages, an ecosystem approach was implemented, and the homeowners conducted wall improvements and household sanitation with the support of the interdisciplinary team (the ecosystem intervention). In the other two villages, a vector control approach based on insecticide spraying was adopted (traditional intervention). Both interventions were associated with a reduction in T. dimidiata infestation, but only the ecosystem approach produced important housing improvements (sanitation and wall construction) capable of preventing T. dimidiata re-infestation in the long term.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Peiman Pilechiha ◽  
Alireza Norouziasas ◽  
Hoorieh Ghorbani Naeini ◽  
Kasmir Jolma

PurposeIn vernacular buildings, many climatic and passive solutions have been used to create indoor thermal comfort. Seasonal occupant movement is an example of a traditional response to increasing thermal comfort. This article investigates the influence of these user behaviours on thermal comfort in courtyard houses.Design/methodology/approachParametric models of three different scenarios of courtyard houses are simulated. The courtyard houses are located in Shiraz, Iran, and share the same orientation and construction materials. To enhance the accuracy of the study, the indoor adaptive thermal comfort (ATC) analysis is performed with three different window-to-wall ratios (WWR) of 25, 50 and 75%. The ACT analysis is performed on an hourly basis for summer and winter scenarios.FindingsThe results demonstrate that the indoor ATC is 8.3% higher in winter than in the summer in the seasonal zones. During the summer, the amount of ATC is relatively sustained in all zones. Unlike common beliefs, seasonal movement can enhance the ATC, especially during winter, specifically in the northern part of the courtyard. In northern zones, the seasonal movement of occupants improves the indoor ATC from 10.1 to 23.7%, and in southern zones, the improvement is from 2.2 to 4.8%.Originality/valueThis research presents a new numerical investigation into occupants' seasonal movements in courtyard houses during summer and winter. It provides a precise pattern to show how much this seasonal movement can affect the habitant's ATC.


2021 ◽  
Vol 118 (5) ◽  
pp. 1317-1331
Author(s):  
Vibhushit Gupta ◽  
Shubham K. Verma ◽  
Sanjeev Anand ◽  
Navin Gupta ◽  
Yatheshth Anand

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1131D-1131
Author(s):  
Fernando Vallejo ◽  
Randolph Beaudry

We tested the sorptive capacity of a number of nontarget materials found in apple storage rooms on their capacity to remove 1-MCP from the storage atmosphere and thereby compete with the fruit for the active compound. Furthermore, we evaluated the impact of temperature and moisture. Nontarget materials included bin construction materials [high density polyethylene (HDPE), polypropylene (PP), weathered oak, nonweathered oak, plywood, and cardboard] and wall construction materials (polyurethane foam and cellulose-based fire retardant). Each piece had an external surface area of 76.9 cm2. We placed our “nontarget” materials in 1-L mason jars and added 1-MCP gas to the headspace at an initial concentration of ≈30 μL·L-1. Gas concentrations were measured after 2, 4, 6, 8, 10, and 24 hours. The concentration of 1-MCP in empty jars was stable for the 24-hour holding period. Little to no sorption was detected in jars containing dry samples of HDPE, PP, cardboard, polyurethane foam, or fire retardant. Inclusion of plywood, nonweathered oak, and weathered oak lead to a loss of 10%, 55%, and 75% of the 1-MCP after 24 hours, respectively. Using dampened materials, no sorption resulted from the inclusion of HDPE, PP, polyurethane foam, or the fire retardant. However, the rate of sorption of 1-MCP by dampened cardboard, plywood, weathered oak, and nonweathered oak increased markedly, resulting in a depletion of ≈98%, 70%, 98%, and 98%, respectively. The data suggest that there are situations where 1-MCP levels can be compromised by wooden and cardboard bin and bin liner materials, but not by plastic bin materials or typical wall construction materials.


2017 ◽  
Vol 6 (2) ◽  
pp. 463-475 ◽  
Author(s):  
D.G. Leo Samuel ◽  
K. Dharmasastha ◽  
S.M. Shiva Nagendra ◽  
M. Prakash Maiya

1991 ◽  
Vol 65 (4) ◽  
pp. 602-610 ◽  
Author(s):  
Stephen B. Church

Conical and vase-shaped calathids are found in the Lower Ordovician Fillmore Formation of western Utah associated with intraformational conglomerates and small patch reefs. Calathium yersini n. sp. exhibits patterns of both the inner and outer walls of calathid two-wall construction. The broadly annulate walls are constructed from meroms with fused proximal merom feet forming the inner wall. The reticulate-patterned outer wall is formed by interlocking stellate ribs at the distal end of each merom. Latitudinal (horizontal) ribs interlock adjacent merom ribs side by side at the tips of ribs while meridional (vertical) ribs overlap merom shaft to merom shaft. Inner and outer walls are perforate. Pore-canal casts preserved in silicified molds suggest an exit and entrance current circulation for inner and outer wall pores. Upper ends of the calathids are not preserved, but an open cup is interpreted from infill material and encrustation of the interior cup wall by epibionts. Epibionts commonly encrust and thicken Calathium outer walls, with the cyanobacterium Girvanella as the dominant encrusting organism. Calathium yersini n. sp., among the earliest of receptaculitids, has a morphology suitable for water circulation consistent with that of filter-feeding organisms.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 604 ◽  
Author(s):  
Kalliopi Fouseki ◽  
David Newton ◽  
Krisangella Sofia Murillo Camacho ◽  
Sohini Nandi ◽  
Theodora Koukou

With buildings being responsible for nearly a quarter of global greenhouse gas emissions, intensive building decarbonization programs are in place worldwide, with unintended consequences for historic buildings. To this end, national and international guidance on energy efficiency for historic buildings advocate for the adoption of a ‘whole house approach’ that integrates heritage values in energy efficiency plans. Most guidance, though, relies on non-evidence based, pre-assumptions of residents’ heritage values. And yet, unless we understand how and why residents negotiate their decisions between energy efficiency, thermal comfort, and heritage conservation, such guidance will not be applicable. Despite the urgency to decarbonize the building stock, research on how inhabitants of old buildings make such decisions is extremely limited. It is also case-study specific, often lacking the required depth. To address this gap, this paper offers the first international, in-depth study on the topic. It does so through a rigorous double-coded, thematic analysis of 59 in-depth semi-structured interviews (totaling 206,771 words) carried out in Greece, Mexico, and the UK. The thematic analysis is combined with system dynamic analysis, essential for unveiling what parameters affect inhabitants’ decisions over time. Drawing on theories on the dynamics of social practices, we conclude that the process of decision-making on energy efficiency, thermal comfort improvement, and heritage conservation is a socio-cultural, dynamic practice, the change and continuation of which depends on how the following elements are connected or disconnected: materials (e.g., original features), competencies (e.g., restoration skills), resources (e.g., costs), values, space/environment (e.g., natural light), senses (e.g., thermal comfort), and time (e.g., years living in the house). The connection or disconnection of those elements will depend on (a) the nature of the context (e.g., rural, urban, conservation area); (b) the listing status; (c) age and construction materials of building; (d) local climate; and (e) ownership status.


2021 ◽  
Author(s):  
Sana Javaid ◽  
Kameswara Yashaswini Sista ◽  
Stephan Pauleit

<p>Indians cities are facing incessant urbanization with lack of adequate green spaces exposing inhabitants to heat stress and increased mortality. Reduction of heat stress or optimization of outdoor thermal comfort (OTC) has been recognized as one of the multiple benefits of urban green infrastructure across different climatic zones. However, there is dearth of such studies in humid-subtropical (Cwa) context, especially India. ‘Urban trees’ are most preferred vegetation type concerning OTC, whereas, ‘parks, streets and gardens’ are most preferred urban green settings in a residential neighbourhood, as indicated by social survey results of another part of this study. But role of urban trees in enhancing OTC in different urban settings remains underexplored. In particular, it needs to be better understood how different morphological characteristics of trees influence their thermal benefits. Hence, we investigated nine sub-tropical tree species in these urban settings of a typical residential neighbourhood in the mid-sized, humid-subtropical city of Dehradun in north India. A sizeable world population inhabits humid-subtropical climates and almost 1/3rd of Indians reside in mid-size cities, making this study widely relevant.</p><p>We used a modelling approach enabling comparison of different trees in similar urban settings which is not possible through on-ground studies. 70 tree species were identified through field surveys and further filtered based on frequency, canopy density, morphology and growth habit. Finally, nine species were selected, three for each urban setting and modelled using Albero, a plugin of the 3D microclimatic simulation software, ENVI-met. Parameters such as tree height, trunk height, canopy shape and density, leaf area density, root spread and diameter etc. were considered for tree modelling. Modelling was validated using the field measurements and indicated a high correlation of 90%. Total nine scenarios were created using ENVI-met for each tree species in the respective urban setting maintaining canopy cover area. Their performance was evaluated by air temperature, relative humidity and mean radiant temperature at 15:00 and 19:00 hours of a peak summer day (2nd July 2019). Thermal comfort was also evaluated using PET (Physiologically Equivalent Temperature) between 9:00-20:00 hours. </p><p>Our results indicate that Mangifera Indica, Azadirachta Indica and Alstonia Scholaris perform best on an average for all parameters in gardens, park and streets respectively. These three trees had dense canopy i.e. high leaf area density (LAD) values and an average tree height between 11-15m. It should be noted that we did not have trees bigger than 15m on our site so results need to be further verified for taller trees. It can, however, be inferred that LAD value and tree height influenced cooling benefits more than trunk height or canopy shape in all urban settings. These results will be used to explore most suitable plantation arrangement in these urban settings. We acknowledge limitation of tree modelling using a software, however, forthcoming ENVI-Met 2021 release will enable detailed tree modelling and further improvise the study. Our results can be used in green space planning in humid subtropical climatic zones with similar urban settings or for further exploration of role of urban tree species. </p>


Sign in / Sign up

Export Citation Format

Share Document