scholarly journals Screening of low-cost materials as heterogeneous catalysts for olive mill wastewater Fenton’s peroxidation

2020 ◽  
Vol 6 ◽  
pp. 161-167
Author(s):  
E. Domingues ◽  
F. Rodrigues ◽  
J. Gomes ◽  
M.J. Quina ◽  
S. Castro-Silva ◽  
...  
2014 ◽  
Vol 145 ◽  
pp. 341-348 ◽  
Author(s):  
Anwar A. Aly ◽  
Yousef N.Y. Hasan ◽  
Abdullah S. Al-Farraj

2021 ◽  
Author(s):  
Gabriela Montiel-Jarillo ◽  
Teresa Gea ◽  
Adriana Artola ◽  
Javier Fuentes ◽  
Julián Carrera ◽  
...  

Abstract Acidogenic fermentation of wastes produces volatile fatty acid (VFA)-rich streams that can be used as low-cost carbon sources for polyhydroxyalkanoate (PHA) production. In this study, an inoculum collected from an anaerobic reactor of a municipal WWTP was conditioned to suppress methanogenic activity. The heat-shock conditioning method of the inoculum proved to be more efficient than acid and alkaline conditioning methods for methanogen inhibition. Then, the pre-conditioned inoculum was used to determine the acidogenic potential of different wastes: three waste activated sludge (WAS) samples generated at different sludge retention times (SRTs, 2, 7 and 14 days), olive mill wastewater (OMW), glycerol, apple pomace (AP) and winterization oil cake (WOC). Batch tests were performed in quintuplicate at 37°C and pH 7. A higher degree of acidification was observed for high-rate activated sludge (2 days of SRT) (69%), followed by olive mill wastewater (OMW) (43%), while the lowest was for glycerol (16%). The results for the winterization oil cake (WOC) samples interestingly elucidated a high content of propionic acid with a high odd-to-even ratio (0.86) after fermentation. Feeding the VFA profile obtained from WOC into a PHA production system led to a significant production of 0.64 g PHA g− 1 C with 30% polyhydrobutyrate (PHB) to 69% polyhydroxyvalerate (PHV) as monomeric units of HB-co-HV, decoupling the need for a related carbon source for co-polymer production.


Energy ◽  
2012 ◽  
Vol 39 (1) ◽  
pp. 74-81 ◽  
Author(s):  
Ajmia Chouchene ◽  
Mejdi Jeguirim ◽  
Alain Favre-Reguillon ◽  
Gwenaelle Trouvé ◽  
Gérard Le Buzit ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 876 ◽  
Author(s):  
Bruno M. Esteves ◽  
Sergio Morales-Torres ◽  
Francisco J. Maldonado-Hódar ◽  
Luis M. Madeira

A series of biochars and activated carbons (ACs) was prepared combining carbonization and physical or chemical activation of cheap and abundant residues of the olive oil industry. These materials were used as Fe-support to develop low-cost catalysts for the heterogeneous Fenton-like oxidation of simulated olive mill wastewater (OMW), the highly pollutant effluent generated by this agroindustry. Commercial ACs were also used as reference. All catalysts prepared were extensively characterized and results related with their performances in the catalytic wet peroxide oxidation (CWPO). Results showed a linear relationship of the textural properties of the catalysts with the adsorptive and catalytic performance, as well as the preferential adsorption and degradation of some phenolic compounds (caffeic and gallic acids) by specific interactions with the catalysts’ surface. Despite the best performance of catalysts developed using commercial supports, those prepared from agro-industrial residues present some advantages, including a smaller catalyst deactivation by iron leaching. CWPO results show that catalysts from physically activated olive stones are the most promising materials, reaching total organic carbon and toxicity reductions of 35% and 60%, respectively, as well an efficient use of H2O2, comparable with those obtained using commercial supports. This approach showed that the optimized treatment of this type of residues will allow their integration in the circular economic process of the olive oil production.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 557
Author(s):  
Cristina Agabo-García ◽  
Naima Calderón ◽  
Gassan Hodaifa

Heterogeneous catalysts can be an efficient and economical option for olive mill wastewater (OMW) treatment by an advanced oxidation process if they could be reused. In this work, OMW was treated using a heterogeneous photo-Fenton reaction (artificial ultraviolet light/H2O2/HFeO2). For this purpose, different concentrations of HFeO2 were tested: 0.04; 0.3; 0.8; 5.0; 10.0; 20.0; 30.0, and 50.0 g/L. The following operational conditions were chosen: pH = 3.0, temperature = 20 °C, agitation rate = 700 rpm. The experimental results showed high removal percentages of the main OMW characterization parameters at 50 g/L of HFeO2: %CODremoval = 62.8%; %total phenolic compounds (TPCs) = 88.9%. These results were also compared with those of other control oxidation systems, i.e., UV, H2O2, and UV/H2O2, which provided 35.5 and 56.1%; 46.2 and 74.0%; 48.0 and 76.8% removal, respectively. In addition, the catalyst was reused three times, recovering more than 90.5% of it.


Sign in / Sign up

Export Citation Format

Share Document