scholarly journals The role of renewable energy, fossil fuel consumption, urbanization and economic growth on CO2 emissions in China

2021 ◽  
Vol 7 ◽  
pp. 783-791
Author(s):  
Binlin Li ◽  
Nils Haneklaus
2019 ◽  
Vol 4 (02) ◽  
pp. 113
Author(s):  
Melati Intan Kurnia ◽  
Hadi Sasana ◽  
Yustirania Septiani

<p><em>Increasing economic growth will spark against increased energy consumption. But on the other hand, increasing economic growth will also trigger the occurrence of natural damage and degradation of environmental quality derived from CO2 emissions. CO2 emissions are caused by oxidation process of fossil fuel energy. This research aims to know the causality relationship between CO2 emissions, fossil fuel consumption, electricity consumption, and economic growth in Indonesia, as well as long-term relationship between CO2 emissions, fossil fuel consumption, electricity consumption, to economic growth in Indonesia in 1990 – 2019. The used data is the secondary data that is in the form of data time series. The dependent variables of this study are economic growth, while independent variables are CO2 emissions, fossil fuel consumption, electricity consumption. The method that is used in this study is Vector Error Correction Model. The results showed that there was a one-way causality between economic growth and fossil fuel consumption, and between electricity consumption and CO2 emissions. The research also shows that on long-term CO2 emissions has a negative influence, while the consumption of fossil fuels and electricity has a positive effect on Indonesia's economic growth in 1990-2019.</em></p><p><strong><em>K</em></strong><strong><em>eywords</em></strong><em>: CO2, Energy Consumption, Economic Growth.</em></p>


Author(s):  
Carl Georg Seydel

In order to meet the ambitious reduction targets for future CO2 emissions and fossil fuel consumption, the extension of renewable power systems is mandatory. One main issue is the fluctuating and unpredictable availability of renewable energy. With a higher portion of renewable energy, a secure electricity supply becomes more challenging. On days with high electricity demand but low availability of renewable energy, fossil back up power plants with high flexibility and efficiency are needed. Most applicable for this requirements are combined cycle power plants, which provide both high flexibility and efficiency. On the other hand potential renewable energy is wasted during days with low electricity demand but high available renewable energy, because electricity cannot be stored yet economically in such vast amounts. In order to use the available renewable energy more efficiently, hydrogen could be produced via electrolysis during phases of surplus available renewable energy. The hydrogen serves as a high density energy storage, which can be used as an alternative fuel in combined cycle power plants for a highly efficient reconversion into electricity if necessary. In this study it is analyzed how the usage of hydrogen as the burner fuel will influence the performance of combined cycle power plants. Therefore the on- and off-design performance of a state of the art combined cycle power plant will be calculated at different ratios of hydrogen mixtures with natural gas. The thermodynamic calculations are made with the performance software GTlab of the German Aerospace Center. Furthermore the natural gas and CO2 savings for different hydrogen ratios will be quantified. The results show that the usage of hydrogen enriched fuel increases the combined cycle efficiency and power output. Accordingly a considerable reduction in CO2 emissions and fossil fuel consumption is possible.


Author(s):  
Lv ◽  
Chu ◽  
McAleer ◽  
Wong

Most authors apply the Granger causality-VECM (vector error correction model), and Toda–Yamamoto procedures to investigate the relationships among fossil fuel consumption, CO2 emissions, and economic growth, though they ignore the group joint effects and nonlinear behaviour among the variables. In order to circumvent the limitations and bridge the gap in the literature, this paper combines cointegration and linear and nonlinear Granger causality in multivariate settings to investigate the long-run equilibrium, short-run impact, and dynamic causality relationships among economic growth, CO2 emissions, and fossil fuel consumption in China from 1965–2016. Using the combination of the newly developed econometric techniques, we obtain many novel empirical findings that are useful for policy makers. For example, cointegration and causality analysis imply that increasing CO2 emissions not only leads to immediate economic growth, but also future economic growth, both linearly and nonlinearly. In addition, the findings from cointegration and causality analysis in multivariate settings do not support the argument that reducing CO2 emissions and/or fossil fuel consumption does not lead to a slowdown in economic growth in China. The novel empirical findings are useful for policy makers in relation to fossil fuel consumption, CO2 emissions, and economic growth. Using the novel findings, governments can make better decisions regarding energy conservation and emission reductions policies without undermining the pace of economic growth in the long run.


2019 ◽  
Vol 3 ◽  
pp. 45-59
Author(s):  
Anh Tru Nguyen ◽  

This article examines the relationships between energy use, fossil fuel consumption, CO2 emissions, and economic growth in three developing countries in Southeast Asia between 1988 and 2017. We found that the GDP per capita positively affects per capita CO2 emissions, and that it has a positive relationship with per capita energy use. Additionally, we found that GDP per capita is negatively affected by fossil fuel consumption, whereas it is positively affected by per capita CO2 emissions. Moreover, results show directional relationships running from per capita CO2 emissions to GDP per capita, from GDP per capita to per capita energy use, from GDP per capita to fossil fuel consumption, and from GDP per capita to per capita CO2 emissions. We found cointegration among the variables at the 1% critical value and two levels of cointegration among variables at the 5% critical value. Finally, we recommend policies to boost economic growth, reduce CO2 emissions, and achieve sustainable development in Southeast Asia.


2021 ◽  
Vol 13 (13) ◽  
pp. 7011
Author(s):  
Abdulaziz A. Alotaibi ◽  
Naif Alajlan

Numerous studies addressed the impacts of social development and economic growth on the environment. This paper presents a study about the inclusive impact of social and economic factors on the environment by analyzing the association between carbon dioxide (CO2) emissions and two socioeconomic indicators, namely, Human Development Index (HDI) and Legatum Prosperity Index (LPI), under the Environmental Kuznets Curve (EKC) framework. To this end, we developed a two-stage methodology. At first, a multivariate model was constructed that accurately explains CO2 emissions by selecting the appropriate set of control variables based on model quality statistics. The control variables include GDP per capita, urbanization, fossil fuel consumption, and trade openness. Then, quantile regression was used to empirically analyze the inclusive relationship between CO2 emissions and the socioeconomic indicators, which revealed many interesting results. First, decreasing CO2 emissions was coupled with inclusive socioeconomic development. Both LPI and HDI had a negative marginal relationship with CO2 emissions at quantiles from 0.2 to 1. Second, the EKC hypothesis was valid for G20 countries during the study period with an inflection point around quantile 0.15. Third, the fossil fuel consumption had a significant positive relation with CO2 emissions, whereas urbanization and trade openness had a negative relation during the study period. Finally, this study empirically indicates that effective policies and policy coordination on broad social, living, and economic dimensions can lead to reductions in CO2 emissions while preserving inclusive growth.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2255 ◽  
Author(s):  
Ehsan Rasoulinezhad ◽  
Farhad Taghizadeh-Hesary ◽  
Farzad Taghizadeh-Hesary

It is widely discussed that GDP growth has a vague impact on environmental pollution due to carbon dioxide emissions from fossil fuels consumed in production, transportation, and power generation. The main purpose of this study is to investigate the relationships between economic growth, fossil fuel consumption, mortality (from cardiovascular disease (CVD), diabetes mellitus (DM), cancer, and chronic respiratory disease (CRD), and environmental pollution since environmental pollution can be a reason for societal mortality rate increases. This study uses the generalized method of moments (GMM) estimation technique for the Commonwealth of Independent States (CIS) members for the period from 1993–2018. The major results revealed that the highest variability of mortality could be explained by CO2 variability. Regarding fossil fuel consumption, the estimation proved that this variable positively affects mortality from CVD, DM, cancer, and CRD. Additionally, any improvements in the human development index (HDI) have a negative effect on mortality increases from CVD, DM, cancer, and CRD in the CIS region. It is recommended that the CIS members implement different policies to improve energy transitions, indicating movement from fossil fuel energy sources to renewable sources. Moreover, we recommend the CIS members enhance various policies for easy access to electricity from green sources and increase the renewable supply through improved technologies, sustainable economic growth, and increase the use of green sources in daily social life.


Sign in / Sign up

Export Citation Format

Share Document