High-resolution en-face visualization of the cardiomyocyte plasma membrane reveals distinctive distributions of spectrin and dystrophin

2005 ◽  
Vol 84 (12) ◽  
pp. 961-971 ◽  
Author(s):  
Shirley A. Stevenson ◽  
Michael J. Cullen ◽  
Stephen Rothery ◽  
Steven R. Coppen ◽  
Nicholas J. Severs
2013 ◽  
Vol 19 (5) ◽  
pp. 1358-1363 ◽  
Author(s):  
Massimo Santacroce ◽  
Federica Daniele ◽  
Andrea Cremona ◽  
Diletta Scaccabarozzi ◽  
Michela Castagna ◽  
...  

AbstractXenopus laevis oocytes are an interesting model for the study of many developmental mechanisms because of their dimensions and the ease with which they can be manipulated. In addition, they are widely employed systems for the expression and functional study of heterologous proteins, which can be expressed with high efficiency on their plasma membrane. Here we applied atomic force microscopy (AFM) to the study of the plasma membrane of X. laevis oocytes. In particular, we developed and optimized a new sample preparation protocol, based on the purification of plasma membranes by ultracentrifugation on a sucrose gradient, to perform a high-resolution AFM imaging of X. laevis oocyte plasma membrane in physiological-like conditions. Reproducible AFM topographs allowed visualization and dimensional characterization of membrane patches, whose height corresponds to a single lipid bilayer, as well as the presence of nanometer structures embedded in the plasma membrane and identified as native membrane proteins. The described method appears to be an applicable tool for performing high-resolution AFM imaging of X. laevis oocyte plasma membrane in a physiological-like environment, thus opening promising perspectives for studying in situ cloned membrane proteins of relevant biomedical/pharmacological interest expressed in this biological system.


2013 ◽  
Vol 288 (23) ◽  
pp. 16855-16861 ◽  
Author(s):  
Jessica F. Frisz ◽  
Haley A. Klitzing ◽  
Kaiyan Lou ◽  
Ian D. Hutcheon ◽  
Peter K. Weber ◽  
...  

The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. Thus, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.


2003 ◽  
Vol 9 (S03) ◽  
pp. 502-503 ◽  
Author(s):  
Jaap Nijsse ◽  
Paul Walther ◽  
Elena Golovina ◽  
Folkert A. Hoekstra

1972 ◽  
Vol 11 (2) ◽  
pp. 477-489
Author(s):  
A. S. BREATHNACH ◽  
C. STOLINSKI ◽  
M. GROSS

Fresh, chemically unfixed, glycerinated specimens of mouse liver were examined by the technique of freeze-fracture replication without sublimation (i.e. they were not ‘etched’). Where extensive areas of fractured lamellar membranes of the rough endoplasmic reticulum are revealed en face, 2 types of fracture face are distinguishable. One of these fracture faces (A) is directed towards the cytoplasm, and the other (B) towards the cisternal cavity. A characteristic mosaic, or patchwork pattern of flat areas circumscribed by particles, is evident on both faces, and more clearly so on face B, due to a greater number of more prominent particles. Similar mosaic patterns are revealed on convex faces of the nuclear membrane, and on concave fracture faces of mitochondrial membranes, but are not evident on fracture faces of the plasma membrane. Uncertainty in establishing the exact plane of fracture of membranes in this material, since glycerol is virtually non-sublimable, makes it difficult to assess the significance of these mosaic patterns. The fact that ribosomes are not identifiable on either face of fractured endoplasmic reticulum membranes, gives no certain indication of the plane of fracture.


Sign in / Sign up

Export Citation Format

Share Document