Endosome to trans-Golgi network transport of Proprotein Convertase 7 is mediated by a cluster of basic amino acids and palmitoylated cysteines

2017 ◽  
Vol 96 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Jeroen Declercq ◽  
Bruno Ramos-Molina ◽  
Ragna Sannerud ◽  
Bas Brouwers ◽  
Vincent P.E.G. Pruniau ◽  
...  
2006 ◽  
Vol 17 (12) ◽  
pp. 5153-5162 ◽  
Author(s):  
Beat E. Schaub ◽  
Bea Berger ◽  
Eric G. Berger ◽  
Jack Rohrer

The Golgi apparatus (GA) is the organelle where complex glycan formation takes place. In addition, it is a major sorting site for proteins destined for various subcellular compartments or for secretion. Here we investigate β1,4-galactosyltransferase 1 (galT) and α2,6-sialyltransferase 1 (siaT), two trans-Golgi glycosyltransferases, with respect to their different pathways in monensin-treated cells. Upon addition of monensin galT dissociates from siaT and the GA and accumulates in swollen vesicles derived from the trans-Golgi network (TGN), as shown by colocalization with TGN46, a specific TGN marker. We analyzed various chimeric constructs of galT and siaT by confocal fluorescence microscopy and time-lapse videomicroscopy as well as Optiprep density gradient fractionation. We show that the first 13 amino acids of the cytoplasmic tail of galT are necessary for its localization to swollen vesicles induced by monensin. We also show that the monensin sensitivity resulting from the cytoplasmic tail can be conferred to siaT, which leads to the rapid accumulation of the galT–siaT chimera in swollen vesicles upon monensin treatment. On the basis of these data, we suggest that cycling between the trans-Golgi cisterna and the trans-Golgi network of galT is signal mediated.


2003 ◽  
Vol 278 (51) ◽  
pp. 50863-50871 ◽  
Author(s):  
Ognian C. Ikonomov ◽  
Diego Sbrissa ◽  
Krzysztof Mlak ◽  
Robert Deeb ◽  
Jason Fligger ◽  
...  

2000 ◽  
Vol 352 (3) ◽  
pp. 827 ◽  
Author(s):  
Jan-Willem H.P. van de LOO ◽  
Meike TEUCHERT ◽  
Ilse PAULI ◽  
Evelyn PLETS ◽  
Wim J.M. Van de VEN ◽  
...  

2000 ◽  
Vol 352 (3) ◽  
pp. 827-833 ◽  
Author(s):  
Jan-Willem H. P. VAN DE LOO ◽  
Meike TEUCHERT ◽  
Ilse PAULI ◽  
Evelyn PLETS ◽  
Wim J. M.VAN DE VEN ◽  
...  

Proprotein convertases are responsible for the endoproteolytic activation of proproteins in the secretory pathway. The most recently discovered member of this family, lymphoma proprotein convertase (LPC), is a type-I transmembrane protein. Previously, we have demonstrated that its cytoplasmic tail is palmitoylated. In this study, we have identified the two most proximal cysteine residues in the cytoplasmic tail as palmitoylation sites. Substitution of either cysteine residue by alanine interfered with palmitoylation of the other. Palmitoylation of LPC was found to be sensitive to the protein palmitoyltransferase inhibitor tunicamycin but not cerulenin. It was also insensitive to the drugs brefeldin A, monensin and cycloheximide, indicating that the modification occurs in a late exocytic or endocytic compartment. Turnover of palmitoylated LPC is significantly faster (t1/2 ≈ 50min) than that of the LPC polypeptide backbone (t1/2 ≈ 3h), suggesting that palmitoylation is reversible. Abrogation of palmitoylation reduced the half-life of the LPC protein, but did not affect steady-state localization of LPC in the trans-Golgi network. Finally, LPC could not be detected in detergent-resistant membrane rafts. Taken together, these results suggest that dynamic palmitoylation of LPC is important for stability, but does not function as a dominant trafficking signal.


1996 ◽  
Vol 132 (4) ◽  
pp. 565-576 ◽  
Author(s):  
J Rohrer ◽  
A Schweizer ◽  
D Russell ◽  
S Kornfeld

Lamp1 is a type I transmembrane glycoprotein that is localized primarily in lysosomes and late endosomes. Newly synthesized molecules are mostly transported from the trans-Golgi network directly to endosomes and then to lysosomes. A minor pathway involves transport via the plasma membrane. The 11-amino acid cytoplasmic tail of lamp1 contains a tyrosine-based motif that has been previously shown to mediate sorting in the trans-Golgi network and rapid internalization at the plasma membrane. We studied whether this motif also mediates sorting in endosomes. We found that mutant forms of lamp1 in which all the amino acids of the cytoplasmic tail were modified except for the RKR membrane anchor and the YXXI sorting motif still localized to dense lysosomes, indicating that the YXXI motif is sufficient to confer proper intracellular targeting. However, when the spacing of the YXXI motif relative to the membrane was changed by deleting one amino acid or adding five amino acids, lysosomal targeting was almost completely abolished. Kinetic studies showed that these mutants were trapped in a recycling pathway, involving trafficking between the plasma membrane and early endocytic compartments. These findings indicate that the YXXI signal of lamp1 is recognized at several sorting sites, including the trans-Golgi network, the plasma membrane, and the early/sorting endosomes. Small changes in the spacing of this motif relative to the membrane dramatically impair sorting in the early/sorting endosomes but have only a modest effect on internalization at the plasma membrane. The spacing of sorting signals relative to the membrane may prove to be an important determinant in the functioning of these signals.


2001 ◽  
Vol 120 (5) ◽  
pp. A142-A142
Author(s):  
J GASKEY ◽  
E SEIDEL

Sign in / Sign up

Export Citation Format

Share Document