Corrigendum to “In vivo antitumor, in vitro antibacterial activity and alkylating properties of phosphorohydrazine derivatives of coumarin and chromone” [Eur J Med Chem 41 (11) (2006) 1301–1309]

2007 ◽  
Vol 42 (6) ◽  
pp. 891 ◽  
Author(s):  
Jolanta Nawrot-Modranka ◽  
Ewa Nawrot ◽  
Julita Graczyk
2011 ◽  
Vol 6 (34) ◽  
pp. 6829-6834, ◽  
Author(s):  
Tao Ke ◽  
Fan Jieyu ◽  
Shi Guanying ◽  
Zhang Xingang ◽  
Zhao Haoyu ◽  
...  

2017 ◽  
Vol 55 (1) ◽  
pp. 1256-1262 ◽  
Author(s):  
Pimporn Anantaworasakul ◽  
Hiroshi Hamamoto ◽  
Kazuhisa Sekimizu ◽  
Siriporn Okonogi

Author(s):  
Yucheng Cao ◽  
Kaiyi Wang ◽  
Jiali Wang ◽  
Haoran Cheng ◽  
Mengxin Ma ◽  
...  

Aim: With the increasing abuse of antibacterial drugs, multidrug-resistant bacteria have become a burden on human health and the healthcare system. To find alternative compounds effective against hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA), novel derivatives of ocotillol were synthesized. Methods & Results: Ocotillol derivatives with polycyclic nitrogen-containing groups were synthesized and evaluated for in vitro antibacterial activity. Compounds 36–39 exhibited potent antibacterial activity against hospital-acquired MRSA, with MIC = 8–64 μg/ml. Additionally, a combination of compound 37 and the commercially available antibiotic kanamycin showed synergistic inhibitory effects, with a fractional inhibitory concentration index of ≤0.375. Conclusion: Compound 37 has a strong inhibitory effect, and this derivative has potential for use as a pharmacological tool to explore antibacterial mechanisms.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S319-S319
Author(s):  
John O’Donnell ◽  
Alita Miller ◽  
Douglas Lane ◽  
Rekha Panchal ◽  
John P Mueller

Abstract Background The genus Burkholderia contains several pathogenic species with distinct etiologies, including Burkholderia pseudomallei the biothreat pathogen responsible for melioidosis and Burkholderia mallei which causes glanders. β-Lactams, such as ceftazidime and meropenem, are important therapeutic options for these infections. However, clinical resistance to β-lactams, which is primarily mediated by multiple types of β-lactamases in these species, is a growing concern. Durlobactam (ETX2514, DUR) is a novel β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C, and D β-lactamases. Sulbactam (SUL) is an Ambler Class A β-lactamase inhibitor with intrinsic antibacterial activity against a limited number of species, including Acinetobacter spp. SUL-DUR is currently in Phase 3 clinical testing for the treatment of carbapenem-resistant infections caused by Acinetobacter spp. In this study, SUL-DUR was tested for in vitro antibacterial activity against B. pseudomallei and B. mallei as well as for in vivo efficacy in a preclinical model of melioidosis. Methods The antibacterial activity of SUL alone or in combination with DUR (fixed at 4 mg/L) against B. pseudomallei (n = 30) and B. mallei (N = 28) was determined following CLSI guidelines. In vivo efficacy was tested in an acute murine model of melioidosis in which 4 × 104 cfu Bp K96423 (SUL-DUR MIC = 1 mg/L) was administered intranasally to BalbC mice. SUL-DUR (100/200 or 400/200 mg/kg) was administered q4h subcutaneously 4 hours post-challenge for 6 days and murine survival was monitored for 45 days. Doxycycline (DOX) and ciprofloxacin (CIP) were dosed as positive controls at 40 mg/kg q12 h for 6 days. Results The addition of DUR effectively lowered the SUL MIC50/90 from 8/16 to 0.25/0.5 mg/L vs. B. pseudomallei and from 8/8 to 1/2 mg/L for B. mallei. All untreated mice in the melioidosis model succumbed to infection within 3 days of challenge. 60% survival was observed for both dose arms of SUL-DUR as compared with 40% survival observed for both CIP and DOX. Conclusion Preliminary preclinical data demonstrating robust in vitro and in vivo antibacterial activity of SUL-DUR against Burkholderia spp. suggests this combination may be an effective new therapy for the treatment of these challenging pathogens. Disclosures All authors: No reported disclosures.


2012 ◽  
Vol 64 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Irena Novakovic ◽  
Jelena Penjisevic ◽  
V. Sukalovic ◽  
Deana Andric ◽  
G. Roglic ◽  
...  

The derivatives of cinnamic acid and N-arylpiperazine show antibacterial activity. In this work the potential synergistic effect of cinnamyl derivatives of arylpiperazine in selected bacteria was investigated. The antibacterial activities of the derivatives were evaluated against Gram-positive bacteria: Staphylococcus aureus, Streptosporangium longisporum, Sarcina lutea, Micrococcus flavus, Clostridium sporogenes and Bacillus subtilis and Gram-negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis and Proteus vulgaris by the disc diffusion method. The minimum inhibitory concentration (MIC) against the selected bacteria was determined for all compounds that showed activity in the disc diffusion method. The majority of the investigated compounds displayed in vitro antibacterial activity. The effect of the type and structure of the substituent on the aromatic ring on the antibacterial activity is discussed. It was found that two derivatives expressed activity toward S. longisporum and P. aeruginosa that was almost as strong as that of amikacin.


Sign in / Sign up

Export Citation Format

Share Document